El Segundo, CA, United States
El Segundo, CA, United States

Time filter

Source Type

Patent
The Aerospace Corporation | Date: 2015-08-10

A spin stabilized aircraft may include a plurality of wings that passively spin stabilize the aircraft, causing the apparatus to move in a direction opposite that of a wind source. The aircraft may also include two or more propulsive arms that actively stabilize the aircraft in absence of wind or a decrease in altitude.


Patent
The Aerospace Corporation | Date: 2015-09-08

Systems and methods are provided for operating to an initial optimized baseline solution to a multi-objective problem. As the baseline solution is implemented, live (e.g., real-time or near real-time) data associated with one or more parameters may be received and compared to expectations of those parameters with the implementation of the initial optimized solution. If a deviation is detected between the expectation of the time progression of the parameters and live data associated with the parameter, then that deviation may be compared to a threshold. If the deviation meets a threshold condition, then an irregular operation may be declared and a new baseline solution may be implemented. The new baseline solution may be obtained as a re-optimized solution.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: MG-1.1-2014 | Award Amount: 6.69M | Year: 2015

The FLEXOP project is about developing multidisciplinary aircraft design capabilities for Europe that will increase competitiveness with emerging markets -particularly in terms of aircraft development costs. A closer coupling of wing aeroelasticity and flight control systems in the design process opens new opportunities to explore previously unviable designs. Common methods and tools across the disciplines also provide a way to rapidly adapt existing designs into derivative aircraft, at a reduced technological risk (e.g. using control to solve a flutter problem discovered during development). The goal will be achieved by: (a) improving efficiency of currently existing wing, by increased span at no excess structural weight, while establishing modifications by aeroelastic tailoring to carry the redesigned derivative wing; (b) developing methods and tools for very accurate flutter modeling and flutter control synthesis, to enable improved flutter management during development, certification, and operation, enabling to fly with the stretched wing at same airspeed as the baseline aircraft; (c) validating the accuracy of developed tools and methods on an affordable experimental platform, followed by a scale-up study, demonstrating the interdisciplinary development cycle. Manufacturers will gain cost efficient methods, tools and demonstrators for enhancing aircraft performance by integrated development of flutter control and aeroelastic tailoring. These inter-disciplinary capabilities will improve the design cycle and the Verification& Validation process of both derivative and new aircraft. Better control of development and certification costs can be achieved if these capabilities are used to address problems early in the design process. Flight test data will be posted on the project website to provide a benchmark for the EU aerospace community. The projects results will serve as a preliminary outlining of certification standards for future EU flexible transport aircraft.


Grant
Agency: European Commission | Branch: H2020 | Program: CS2-RIA | Phase: JTI-CS2-2014-CFP01-AIR-01-05 | Award Amount: 344.23K | Year: 2016

A faced challenge for the CROR concept is to maintain the current level of safety mandated by aviation and certification regulations and to provide blade impact mitigation at the airframe level without resulting in a large weight penalty. This leads to a demanding impact analysis and design problem of two complex composite structures, the fuselage structure (target) and the CROR blade or fragment structure (impactor). The main aim of the proposed research is to develop a robust, computationally efficient, multi-scale numerical simulation model, based on ABAQUS Explicit FE solver, for the virtual-testing of partial or full-scale CROR blade impacts. Following common practice, a building block approach is employed to validate the predictive FEA capabilities. Specific objectives of the project are: (1) Design of Representative Blade Specimens; (2) Development of multi-scale explicit impact Finite Element Models; (3) Manufacturing of Representative Specimens. The project will primarily focus on the development and validation of robust and mature ABAQUS Explicit FEA models coupled with GENOA multi-scale composite mechanics and progressive damage analysis software, for the numerical simulation of impact of CROR blades. Virtual testing will be supported by a physical testing building block plan. A series of representative coupons and physical bade specimens will be manufactured using the RTM method. Low level tests entailing material characterization and representative impacts of composite plates will be conducted to provide all necessary material properties and the verification of the constitutive material models starting from micromechanics scale. The fabrication of all blade specimens will enable the comprehensive validation and improvement of numerical FEA models to ensure realistic predictive capabilities with respect to impact behavior of the blade impactor structure.


Patent
The Aerospace Corporation | Date: 2016-03-11

A plurality of spacecraft may be dispersed into a ring constellation or structure. Data may be wirelessly relayed between spacecraft similar to data flowing in a ring network. The ring structure minimizes inter-spacecraft velocities and tracking angle motion to allow use of fixed high-gain radio frequency (RF) antennas or medium-divergence lasers for crosslinks. Data may flow between spacecraft to be downloaded by the next spacecraft that will be passing over a ground station. This reduces data latency when a single ground station is used, and significantly reduces data latency when more than one ground station is used.


Patent
The Aerospace Corporation | Date: 2016-03-11

A relay satellite node is provided. The relay satellite node may enable separate pointing of a receive portion and transmit portion of the node, enabling continuous communication through the node. The node may include two separate satellites flying in close proximity to one another. One of the satellites may use its attitude-control system to enable high-gain communications from a distant source, and the other satellite may use its attitude-control system to enable high-gain communication to a distant receiver. The two satellites may communicate with one another over a high-rate, short-range, omnidirectional communication system. A LEO network of these nodes, in combination with dedicated client-specific relay satellites may provide high-rate communication between any space asset and a ground network with latency limited only by the speed of light.


Patent
The Aerospace Corporation | Date: 2016-03-11

A dedicated satellite to reduce the cost and increase the rate and reliability of data transmission from space to ground is provided. For each client satellite producing data in Earth orbit, a dedicated relay satellite is provided. The relay satellite may fly near the client satellite and receive data from the client satellite by RF communication. The relay satellite may transmit the data to a ground terminal or to another satellite using a laser communication system. Because the relay satellite is not physically connected to the client satellite, the attitude-control requirements of an optical communication system are not imposed on the client satellite. The relay satellite may also be deployed from the client satellite. The relay satellite may allow downlinking large amounts of data for new satellite operators without an existing ground network and for established satellite operators seeking higher data rates, lower latency, or reduced ground system operating costs.


Patent
The Aerospace Corporation | Date: 2016-03-11

A system for reducing the cost and increasing the rate and reliability of data transmission from space to ground includes a network of relay satellites in low Earth orbit (LEO). Each relay satellite is configured to receive data from one or more client satellites, and configured to transmit data from LEO to ground using optical communications. The system may also include multiple optical ground stations configured to receive the data and transmit the received data using terrestrial networks to client locations. The network may provide an alternative to downlinking large amounts of data for new satellite operators without an existing ground network and for established satellite operators seeking higher data rates, lower latency, or reduced ground system operating costs.


Under one aspect of the present invention, a method for enhancing mobility of an atomic or molecular species on a substrate may include exposing a first region of a substrate to an atomic or molecular species that forms a molecular bond with the substrate in the first region; directing a laser pulse to a second region of the substrate so as to generate an acoustic wave in the second region, the acoustic wave having spatial and temporal characteristics selected to alter the molecular bond; and transmitting the acoustic wave from the second region to the first region, the acoustic wave altering the molecular bond between the substrate and the atomic or molecular species to enhance mobility of the atomic or molecular species on the substrate in the first region.


Patent
The Aerospace Corporation | Date: 2016-05-26

Aircraft lighting systems that are adjustable based on a location of a movable object are described. The lighting systems can include one or more sensors and a processing device. The one or more sensors can be positioned in an aircraft for determining location data of a movable object relative to the aircraft. The processing device can be communicatively coupled to at least one of the one or more sensors for receiving the location data from the at least one sensor and the processing device can adjust lighting in one or more sections of the aircraft based on the location data.

Loading The Aerospace Corporation collaborators
Loading The Aerospace Corporation collaborators