Time filter

Source Type

Sheykhhasan M.,The Academic Center for Education | Nikbakht M.,Tehran University of Medical Sciences | Ghiasi M.,Tehran University of Medical Sciences | Ghiasi M.,Qom University of Medical Sciences
Tehran University Medical Journal | Year: 2017

Intervertebral disks (IVD) acts as shock absorber between each of the vertebrae in the spinal column by keeping the vertebrae separated when the shock caused by the action. They also serve to protect the nerves that run down the middle of the spine and intervertebral disks. The disks are made of fibrocartilaginous material. The outside of the disk is made of a strong material called the annulus fibrosus. Inside this protective covering is a jelly-like substance known as mucoprotein gel. This interior is known as the nucleus pulposus. The nucleus pulposus consists of large vacuolated notochord cells, small chondrocyte-like cells, collagen fibrils, and aggrecan, a proteoglycan that aggregates by binding to hyaluronan. Attached to each aggrecan molecule are glycosaminoglycan (GAG) chains of chondroitin sulfate and keratan sulfate. Intervertebral disks degeneration is frequently associated with low back and neck pain, which accounts as a disability. Despite the known outcomes of the Intervertebral disks degeneration cascade, the treatment of IVD degeneration is limited in that available conservative and surgical treatments do not reverse the pathology or restore the IVD tissue. Regenerative medicine for IVD degeneration, by injection of Intervertebral disks cells, chondrocytes or stem cells, has been extensively studied in the past decade in various animal models of induced IVD degeneration, and has progressed to clinical trials in the treatment of various spinal disease. Despite preliminary results showing positive effects of cell-injection strategies for IVD regeneration, detailed basic research on Intervertebral disks cells and their niche demonstrates that transplanted cells are unable to survive and adapt in the avascular niche of the IVD. For this therapeutic strategy to succeed, the indications for its use and the patients who would benefit need to be better defined. To surmount these obstacles, the solution will be identified only by focused research, both in the laboratory and in the clinic. In present paper, the potential utilization of different adult stem cells for intervertebral disc regeneration has been reported. Bone marrow mesenchymal stem cells, adipose tissue derived stem cells, synovial stem cells and committed IVD cells have been studied for this purpose either in vitro or in vivo. © 2017, Tehran University of Medical Sciences. All rights reserved.


Ghiasi M.,The Academic Center for Education | Kalhor N.,The Academic Center for Education | Tabatabaei Qomi R.,The Academic Center for Education | Sheykhhasan M.,The Academic Center for Education
Frontiers in Life Science | Year: 2015

This study presents a comparative assessment of adipose-derived stem cell (ADSCs) proliferation rates and their viability on five different scaffolds. Five different biomaterial scaffolds were prepared: alginate, poly lactic-co-glycolic acid, fibrin glue, inactive platelet-rich plasma, and active platelet-rich plasma (APRP). Stem cells were isolated from human adipose tissue. Flow cytometry analysis was performed. Specifically, adipogenesis/osteogenesis/chondrogenesis-associated genes expression was analyzed by real-time polymerase chain reaction. These cells were seeded in the prepared scaffolds. After 14 days, the proliferation and viability of MSCs were evaluated using an MTT assay. Also, stemness genes expression was analyzed with the reverse transcriptasepolymerase chain reaction (RT-PCR) method. In addition, the DNA content assay was also performed. The obtained results showed a significant difference between cell proliferation and viability of different scaffolds. APRP and alginate were shown to be the most and least suitable scaffolds in terms of enhancing cell proliferation and maintaining cell viability respectively (p < .05). RT-PCR reactions demonstrated the expression of the various stemness-related markers (Nanog, Octamer4A, and Sox2) when ADSC cells were grown separately on the five different scaffolds. Our study indicates that compared with the scaffolds, APRP could be the best scaffold for support of ADSC proliferation. © 2015 Taylor & Francis


Ghiasi M.,The Academic Center for Education | Qomi R.T.,The Academic Center for Education | Nikbakht M.,Tehran University of Medical Sciences | Sheykhhasan M.,The Academic Center for Education
Tehran University Medical Journal | Year: 2015

Background: Stem cells represent an ideal cell source for application in tissue engineering and regenerative medicine due to their ability to proliferate and differentiate to a wide variety of cell lineages. With recent development of medical sciences and tissue engineering, usage of adipose-derived mesenchymal stem cells, their culture and differentiation on suitable scaffolds are considered as a successful clinical and research strategy. One of the most crucial factors in a successful tissue engineering technique is to choose an appropriate scaffold which allow cell migration transferring of bioactive factors as well as providing optimal growth environment for stem cells. In this study, the ability of two scaffolds is investigated as a suitable environment for the proliferation and differentiation of adipose-derived mesenchymal stem cells. Methods: This is an in vitro study that was performed in Laboratory of Stem Cell in Academic Center for Education, Culture and Research, Qom province from April 2013 to February 2014. In this study, two scaffolds including fibrin glue and alginate were prepared as two separate groups and after isolating mesenchymal stem cells from adipose tissue and adequate proliferation, they were seeded into each scaffold in chondrogenic medium. After 14 days, the evaluation of viability and gene expression of collagen II and I, SOX9 and aggrecan were done by MTT (3-{4,5-dimethylthiazol-2yl}-2,5diphenyl-2H tetrazolium bromide) assay and real-time PCR technique respectively. Also, cartilaginous tissue formation on scaffolds was evaluated by histological analysis. Results: According to the obtained results, the fibrin glue scaffold showed significant difference in terms of viability in comparison to alginate scaffold in chondrocyte differentiating medium (P< 0.05). Also the results of real-time PCR analysis showed that the fibrin glue scaffold express cartilage specific genes at a higher level than alginate scaffold. Conclusion: The use of natural fibrin glue scaffold can be considered as a suitable en vironment for proliferation and differentiation of adipose-derived mesenchymal stem cells in cartilage tissue engineering. © Tehran University of Medical Sciences. All rights reserved.


Qomi R.T.,The Academic Center for Education | Sheykhhasan M.,The Academic Center for Education | Kalhor N.,The Academic Center for Education | Ghiasi M.,The Academic Center for Education
Journal of Mazandaran University of Medical Sciences | Year: 2015

Background and purpose: Mesenchymal stem cells (MSCs) are the most widely used cell sources for cartilage tissue engineering. In the present study, human stem cells were used as a cell source. Scaffolds play an important role in tissue engineering, therefore, this study aimed at evaluating the ability of fibrin scaffolds in chondrogenic differentiation of adipose-derived mesenchymal stem cells (ADMSCs). Materials and methods: In this study, after preparing fibrin scaffold, isolating mesenchymal stem cells from adipose tissue, and confirming their isolation the cells were cultured into fibrin scaffolds. Seven days after cell culture, their potential of survival and growth were evaluated using MTT assay. Finally, 14 days after the end of the chondrogenic differentiation, gene expression analysis and chondrocyte morphology formation was performed by Real time PCR and histology analysis, respectively. Results: The mesenchymal stem cell viability, proliferation and expression of 4 specific chondrogenic genes significantly increased in a fibrin scaffold compared with those of the control group. Moreover, the formation of chondrocyte cells on fibrin scaffold was confirmed. Conclusion: Fibrin scaffold was found suitable for condrogenic differentiation of adiposederived mesenchymal stem cells. © 2015, Mazandaran University of Medical Sciences. All rights reserved.


Sheykhhasan M.,The Academic Center for Education | Qomi R.T.,The Academic Center for Education | Ghiasi M.,The Academic Center for Education
International Journal of Stem Cells | Year: 2015

Background and Objectives: One of the most cellular source used for cartilage tissue engineering are mesenchymal stem cells (MSCs). In present study, human MSCs were used as cellular source. Since scaffold plays an important role in tissue engineering the aim of this study is to assess fibrin scaffold ability in chondrogenic differentiation of adipose-derived mesenchymal stem cells (ADMSCs). Methods: ADMSCs were isolated and cultured in DMEM medium supplemented with 10% FBS. Also ADMSCs expanded and characterised by flow cytometry. ADMSCs expressed CD44, CD90, CD105 but not CD34. After trypsinization, cells were entered within the fibrin scaffold. Then, chondrogenic medium was added to the scaffold. Seven days after cell culture, cell viability and proliferation were assessed by MTT test. Finally, 14 days after the ending of chondrogenic differentiation, analysis of chondrogenic genes expression was evaluated by RT-PCR and Real time PCR. Also, formation and development of chondrocyte cells was analysed by histological and immunohistochemistry evaluations. Results: Viability and proliferation as well as chondrogenic genes expression within fibrin scaffold increased significantly compared with control group (cells free scaffold). Also, histological and immunohistochemistry evaluation showed that chondrocyte cells and collagen type II are formed on fibrin scaffold. Conclusions: Fibrin is a suitable scaffold for chondrogenic differentiation of ADMSCs. © 2015 Korean Society for Stem Cell Research.


PubMed | The Academic Center for Education
Type: Journal Article | Journal: International journal of stem cells | Year: 2015

One of the most cellular source used for cartilage tissue engineering are mesenchymal stem cells (MSCs). In present study, human MSCs were used as cellular source. Since scaffold plays an important role in tissue engineering the aim of this study is to assess fibrin scaffold ability in chondrogenic differentiation of adipose-derived mesenchymal stem cells (ADMSCs).ADMSCs were isolated and cultured in DMEM medium supplemented with 10% FBS. Also ADMSCs expanded and characterised by flow cytometry. ADMSCs expressed CD44, CD90, CD105 but not CD34. After trypsinization, cells were entered within the fibrin scaffold. Then, chondrogenic medium was added to the scaffold. Seven days after cell culture, cell viability and proliferation were assessed by MTT test. Finally, 14 days after the ending of chondrogenic differentiation, analysis of chondrogenic genes expression was evaluated by RT-PCR and Real time PCR. Also, formation and development of chondrocyte cells was analysed by histological and immunohistochemistry evaluations.Viability and proliferation as well as chondrogenic genes expression within fibrin scaffold increased significantly compared with control group (cells free scaffold). Also, histological and immunohistochemistry evaluation showed that chondrocyte cells and collagen type II are formed on fibrin scaffold.Fibrin is a suitable scaffold for chondrogenic differentiation of ADMSCs.


PubMed | Babol University of Medical Sciences and The Academic Center for Education
Type: Journal Article | Journal: Indian journal of orthopaedics | Year: 2015

Although progenitor cells have been observed in articular cartilage, this part has a limited ability to repair due to a lack of blood supply. Formerly, tissue engineering was mainly based on collecting chondrocytes from the joint surface, culturing them on resorbable scaffolds such as poly D, L-lactic glycolic acid (PLGA) and then autologous transplantation. In recent times, due to difficulties in collecting chondrocytes, most of the researchers are focused on stem cells for producing these cells. Among the important factors in this approach, is using appropriate scaffolds with good mechanical and biological properties to provide optimal environment for growth and development of stem cells. In this study, we evaluated the potential of fibrin glue, PLGA and alginate scaffolds in providing a suitable environment for growth and chondrogenic differentiation of mesenchymal stem cells (MSCs) in the presence of transforming growth factor-3.Fibrin glue, PLGA and alginate scaffolds were prepared and MSCs were isolated from human adipose tissue. Cells were cultured separately on the scaffolds and 2 weeks after differentiation, chondrogenic genes, cell proliferation ability and morphology in each scaffold were evaluated using real time-polymerase chain reaction, MTT chondrogenic assay and histological examination, respectively.Proliferation of differentiated adipose tissue derived mesenchymal stem cells (AD-MSCs) to chondrogenic cells in Fibrin glue were significantly higher than in other scaffolds. Also, Fibrin glue caused the highest expression of chondrogenic genes compared to the other scaffolds. Histological examination revealed that the pores of the Fibrin glue scaffolds were filled with cells uniformly distributed.According to the results of the study, it can be concluded that natural scaffolds such as fibrin can be used as an appropriate environment for cartilage differentiation.

Loading The Academic Center for Education collaborators
Loading The Academic Center for Education collaborators