Time filter

Source Type

Chen S.-J.,Zhejiang University | Yang J.-F.,Zhejiang University | Kong F.-P.,Zhejiang University | Ren J.-L.,Zhejiang University | And 9 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2014

Cerebral edema is a potentially life-threatening illness, but knowledge of its underlying mechanisms is limited. Here we report that hypobaric hypoxia induces rat cerebral edema and neuronal apoptosis and increases the expression of corticotrophin releasing factor (CRF), CRF receptor type 1 (CRFR1), aquaporin-4 (AQP4), and endothelin-1 (ET-1) in the cortex. These effects, except for the increased expression of CRF itself, could all be blocked by pretreatment with an antagonist of the CRF receptor CRFR1. We also show that, in cultured primary astrocytes: (i) both CRFR1 and AQP4 are expressed; (ii) exogenous CRF, acting through CRFR1, triggers signaling of cAMP/PKA, intracellular Ca2+, and PKCε; and (iii) the up-regulated cAMP/PKA signaling contributes to the phosphorylation and expression of AQP4 to enhance water influx into astrocytes and produces an up-regulation of ET-1 expression. Finally, using CHO cells transfected with CRFR1+and AQP4+, we show that transfected CRFR1+contributes to edema via transfected AQP4+. In conclusion, hypoxia triggers cortical release of CRF, which acts on CRFR1 to trigger signaling of cAMP/PKA in cortical astrocytes, leading to activation of AQP4 and cerebral edema.


Yang C.-P.,117th Hospital of the Peoples Liberation Army | Cao J.-L.,117th Hospital of the Peoples Liberation Army | Yang R.-R.,117th Hospital of the Peoples Liberation Army | Guo H.-R.,322nd Hospital of the Peoples Liberation Army | And 4 more authors.
Journal of Laparoendoscopic and Advanced Surgical Techniques | Year: 2014

Background: Even though laparoscopic cholecystectomy (LC) emerged over 20 years ago, controversies persist with regard to the best method to ligate the cystic duct and artery. We proposed to assess the effectiveness and safety of electrocoagulation to seal the cystic artery and cystic duct after their occlusion with only one absorbable clip. Materials and Methods: We retrospectively compared the clinical data for 635 patients undergoing LC using electrocoagulation to seal the cystic artery and cystic duct that were occluded with only one absorbable clip (Group 1) and 728 patients undergoing LC using titanium clips (Group 2). In parallel, 30 rabbits randomized into six groups underwent cholecystectomy. After cystic duct ligation with absorbable or titanium clips, the animals were sacrificed 1, 3, or 6 months later, and intraabdominal adhesions were assessed after celiotomy. Results: The mean operative time was significantly shorter (41.6 versus 58.9 minutes, P<.01) in Group 1 than in Group 2. No cystic duct leaks occurred in any patients from Group 1, compared with seven leaks among the 728 (0.96%) patients from Group 2 (P<.05). The morbidity was significantly higher in Group 2 than in Group 1 (3.43% versus 1.58%). Mean intraoperative blood loss and hospitalization length were not significantly different between the two groups, and no deaths occurred in either group. In animal experiments, adhesion was tighter for absorbable than for titanium clips, but fibrous tissue encapsulation was thinner at the site of titanium clips. Conclusions: Electrocoagulation of the cystic artery and cystic duct that were occluded with only one absorbable clip is safe and effective during LC. This approach is associated with shortened operative times and reduced leakage, compared with the standard method using metal clips. © 2014, Mary Ann Liebert, Inc.


PubMed | Capital Medical University, University of Edinburgh, 117th Hospital of the Peoples Liberation Army and Zhejiang University
Type: Journal Article | Journal: Proceedings of the National Academy of Sciences of the United States of America | Year: 2014

Cerebral edema is a potentially life-threatening illness, but knowledge of its underlying mechanisms is limited. Here we report that hypobaric hypoxia induces rat cerebral edema and neuronal apoptosis and increases the expression of corticotrophin releasing factor (CRF), CRF receptor type 1 (CRFR1), aquaporin-4 (AQP4), and endothelin-1 (ET-1) in the cortex. These effects, except for the increased expression of CRF itself, could all be blocked by pretreatment with an antagonist of the CRF receptor CRFR1. We also show that, in cultured primary astrocytes: (i) both CRFR1 and AQP4 are expressed; (ii) exogenous CRF, acting through CRFR1, triggers signaling of cAMP/PKA, intracellular Ca(2+), and PKC; and (iii) the up-regulated cAMP/PKA signaling contributes to the phosphorylation and expression of AQP4 to enhance water influx into astrocytes and produces an up-regulation of ET-1 expression. Finally, using CHO cells transfected with CRFR1(+) and AQP4(+), we show that transfected CRFR1(+) contributes to edema via transfected AQP4(+). In conclusion, hypoxia triggers cortical release of CRF, which acts on CRFR1 to trigger signaling of cAMP/PKA in cortical astrocytes, leading to activation of AQP4 and cerebral edema.

Loading 117Th Hospital of the Peoples Liberation Army collaborators
Loading 117Th Hospital of the Peoples Liberation Army collaborators