TGen

Phoenix, AZ, United States
Phoenix, AZ, United States
SEARCH FILTERS
Time filter
Source Type

News Article | May 8, 2017
Site: www.scientificcomputing.com

Product developers talk about time to market. Web service providers measure time to first byte. For James Lowey, the key metric is time to life. Lowey is CIO at the Translational Genomics Research Institute (TGen), a nonprofit focused on turning genomics insights into faster diagnostics and treatments that are more effective. TGen’s genetics research is being applied to rare childhood diseases, cancer, neurological disorders, diabetes and others. “We’ve got patients waiting,” Lowey told the panel audience. “We need to diagnose and treat them. They need results now, not in weeks or months. We’re working to accelerate the movement of insights from the bench to the bedside.” It’s no surprise that each new generation of processors helps organizations like TGen deliver genetic results—and clinical answers—more quickly. Lowey described TGen’s farm of Intel Xeon processor E5 v3 based Dell blade servers based on Intel Scalable System Framework (Intel SSF). Using the blade servers, TGen has reduced processing time for critical genomics processing tasks from two weeks to seven hours, making it fast enough to be clinically relevant. Digital imaging is another area where HPC-enabled speedups are advancing clinical care. Panelist Simon K. Warfield described innovative imaging techniques his team is applying to increase understanding of the brain’s complex circuitry. Dr. Warfield is the Thorne Griscom Professor of Radiology at Harvard Medical School and the founder and director of the Computational Radiology Lab (CRL) at Boston Children's Hospital. CRL is an Intel Parallel Computing Center that is modernizing the algorithms and data structures of medical image computing on Intel Xeon and Intel Xeon Phi processors. The lab is improving cache performance, vectorization performance and multi-threading performance, as well as creating more sophisticated imaging and modeling strategies. CRL can contribute to improved diagnosis and treatment of brain injuries, multiple sclerosis, depression, Alzheimer’s and many other conditions. Consider the novel technique CRL has developed to show more clearly water’s diffusion through the brain—and pinpoint hindrances and restrictions to its flow. In contrast to traditional image processing approaches, CRL’s diffusion-weighted imaging infers new parametric maps from data measurements. Its computational model includes tens or hundreds of 3D images—each up to 10 million pixels each—as its inputs. “This type of analysis is very computationally intensive,” Warfield said. “With the accelerated algorithm and the Intel Xeon Phi processors, we reduced the time needed from 48 hours to 15 minutes of calculations.” That speedup can translate to immediate benefits in for critically ill patients facing brain surgery. That’s because, as Warfield put it, “When you’re talking about surgical planning, life is a matter of time.” Recently, one of the hospital’s neurosurgery teams realized on a Friday that their patient’s conventional magnetic resonance scan was not clear enough to allow them to proceed with a planned brain resection. With the surgery-planning meeting scheduled for Monday, they requested emergency use of CRL’s diffusion imaging algorithm. The patient had a new scan Saturday evening, the data was processed on Sunday, and the information was ready for the team’s decision on Monday. The panel also highlighted precision medicine’s global reach—and its big data challenges. Fang Lin, Director of the Bioinformatics Center at BGI, described BGI’s use of the Lustre file system to help maintain storage performance as its data volumes grow. BGI is a global research leader as well as a provider of genetic testing products. It also operates the China National Genebank, putting it on the forefront of China’s five-year. BGI cranks 20 terabytes of sequencing data every day. The institute stores13petabytes of genomic data and uses a 10 petabyte file system comprising Intel Enterprise Edition for Lustre Software and open source technologies. Dr. David Torrents, a molecular biologist and research professor at the Barcelona Supercomputing Center, shone a spotlight on the importance of collaboration in advancing precision medicine. BSC provides resources to a variety of international centers and consortia. In addition, the institute conducts its own multidisciplinary research in computational biomedicine and related fields. BSC’s alliances also encompass a range of hospitals and medical centers, enabling it to validate and test its models and tools with data from clinical institutions. “We’re at an exciting moment,” Torrents said. “We are not just developing new solutions for personalized medicine, but now are beginning a pilot program in January 2017 to bring them together and apply them in clinical settings, beginning in Catalonia and then throughout Spain.” The panelists say continued leaps forward in precision medicine will come from faster and more sophisticated analysis of larger volumes of more varied data types. “What we want is a more holistic picture, and for that, it’s becoming absolutely critical to combine many diverse data types together for analysis,” said Lowey. To achieve that holistic picture, researchers want to use deep learning and other forms of artificial intelligence. They also want to apply those AI methods to genomic data in combination with imaging data, lifelong clinical records, population studies, environmental studies, and much more. Different aspects of the precision medicine workflow will have varying processing and storage requirements. So the push continues for faster performance with agile or heterogeneous platform architectures rather than a single “silver bullet” approach. The processors will continue as the primary workhorses, supplemented by embedded resources and FPGA accelerators for parts of the workflow. Distributed compute and storage resources will remain crucial, along with advances in applications and tools. As to the clinical impact of these holistic approaches, look no further than Boston Children’s Hospital. Noninvasive prenatal genomic testing can indicate whether a fetus has the risk factors that predispose it to be born with a malformed heart. If genetic testing shows these factors are present, data-intensive digital imaging can reveal whether the heart is actually deformed. By combining genomic with other medical data in this way, clinicians can provide peace of mind for worried parents-to-be, or help them plan for their child’s future. “We’re starting to connect the genetics that predisposes an individual to heart disease, with the imaging to see if the defect is present, and use that information to influence current treatment,” said Warfield. “That information can also help us plan for the child’s longer-term future. We can predict how they’ll do as teenagers and begin to plan accordingly.” Precision medicine is one of the most promising and meaningful applications of high-performance computing today. “It’s still early days, but we’re moving toward an exciting new era of predictive biology and personalized medicine,” said McManus. “Our panelists gave us a great taste of what’s on the horizon. With continued advances in platform technologies, artificial intelligence, and other areas, we create significant opportunities to increase the science of medicine and ultimately improve human health. Intel is excited to empower scientists and clinicians with technology innovations, resources and expertise as we collaborate to make this new era a reality.” Jan Rowell writes about technology trends in HPC, healthcare, life sciences, and other industries.


News Article | May 8, 2017
Site: www.scientificcomputing.com

Product developers talk about time to market. Web service providers measure time to first byte. For James Lowey, the key metric is time to life. Lowey is CIO at the Translational Genomics Research Institute (TGen), a nonprofit focused on turning genomics insights into faster diagnostics and treatments that are more effective. TGen’s genetics research is being applied to rare childhood diseases, cancer, neurological disorders, diabetes and others. “We’ve got patients waiting,” Lowey told the panel audience. “We need to diagnose and treat them. They need results now, not in weeks or months. We’re working to accelerate the movement of insights from the bench to the bedside.” It’s no surprise that each new generation of processors helps organizations like TGen deliver genetic results—and clinical answers—more quickly. Lowey described TGen’s farm of Intel Xeon processor E5 v3 based Dell blade servers based on Intel Scalable System Framework (Intel SSF). Using the blade servers, TGen has reduced processing time for critical genomics processing tasks from two weeks to seven hours, making it fast enough to be clinically relevant. Digital imaging is another area where HPC-enabled speedups are advancing clinical care. Panelist Simon K. Warfield described innovative imaging techniques his team is applying to increase understanding of the brain’s complex circuitry. Dr. Warfield is the Thorne Griscom Professor of Radiology at Harvard Medical School and the founder and director of the Computational Radiology Lab (CRL) at Boston Children's Hospital. CRL is an Intel Parallel Computing Center that is modernizing the algorithms and data structures of medical image computing on Intel Xeon and Intel Xeon Phi processors. The lab is improving cache performance, vectorization performance and multi-threading performance, as well as creating more sophisticated imaging and modeling strategies. CRL can contribute to improved diagnosis and treatment of brain injuries, multiple sclerosis, depression, Alzheimer’s and many other conditions. Consider the novel technique CRL has developed to show more clearly water’s diffusion through the brain—and pinpoint hindrances and restrictions to its flow. In contrast to traditional image processing approaches, CRL’s diffusion-weighted imaging infers new parametric maps from data measurements. Its computational model includes tens or hundreds of 3D images—each up to 10 million pixels each—as its inputs. “This type of analysis is very computationally intensive,” Warfield said. “With the accelerated algorithm and the Intel Xeon Phi processors, we reduced the time needed from 48 hours to 15 minutes of calculations.” That speedup can translate to immediate benefits in for critically ill patients facing brain surgery. That’s because, as Warfield put it, “When you’re talking about surgical planning, life is a matter of time.” Recently, one of the hospital’s neurosurgery teams realized on a Friday that their patient’s conventional magnetic resonance scan was not clear enough to allow them to proceed with a planned brain resection. With the surgery-planning meeting scheduled for Monday, they requested emergency use of CRL’s diffusion imaging algorithm. The patient had a new scan Saturday evening, the data was processed on Sunday, and the information was ready for the team’s decision on Monday. The panel also highlighted precision medicine’s global reach—and its big data challenges. Fang Lin, Director of the Bioinformatics Center at BGI, described BGI’s use of the Lustre file system to help maintain storage performance as its data volumes grow. BGI is a global research leader as well as a provider of genetic testing products. It also operates the China National Genebank, putting it on the forefront of China’s five-year. BGI cranks 20 terabytes of sequencing data every day. The institute stores13petabytes of genomic data and uses a 10 petabyte file system comprising Intel Enterprise Edition for Lustre Software and open source technologies. Dr. David Torrents, a molecular biologist and research professor at the Barcelona Supercomputing Center, shone a spotlight on the importance of collaboration in advancing precision medicine. BSC provides resources to a variety of international centers and consortia. In addition, the institute conducts its own multidisciplinary research in computational biomedicine and related fields. BSC’s alliances also encompass a range of hospitals and medical centers, enabling it to validate and test its models and tools with data from clinical institutions. “We’re at an exciting moment,” Torrents said. “We are not just developing new solutions for personalized medicine, but now are beginning a pilot program in January 2017 to bring them together and apply them in clinical settings, beginning in Catalonia and then throughout Spain.” The panelists say continued leaps forward in precision medicine will come from faster and more sophisticated analysis of larger volumes of more varied data types. “What we want is a more holistic picture, and for that, it’s becoming absolutely critical to combine many diverse data types together for analysis,” said Lowey. To achieve that holistic picture, researchers want to use deep learning and other forms of artificial intelligence. They also want to apply those AI methods to genomic data in combination with imaging data, lifelong clinical records, population studies, environmental studies, and much more. Different aspects of the precision medicine workflow will have varying processing and storage requirements. So the push continues for faster performance with agile or heterogeneous platform architectures rather than a single “silver bullet” approach. The processors will continue as the primary workhorses, supplemented by embedded resources and FPGA accelerators for parts of the workflow. Distributed compute and storage resources will remain crucial, along with advances in applications and tools. As to the clinical impact of these holistic approaches, look no further than Boston Children’s Hospital. Noninvasive prenatal genomic testing can indicate whether a fetus has the risk factors that predispose it to be born with a malformed heart. If genetic testing shows these factors are present, data-intensive digital imaging can reveal whether the heart is actually deformed. By combining genomic with other medical data in this way, clinicians can provide peace of mind for worried parents-to-be, or help them plan for their child’s future. “We’re starting to connect the genetics that predisposes an individual to heart disease, with the imaging to see if the defect is present, and use that information to influence current treatment,” said Warfield. “That information can also help us plan for the child’s longer-term future. We can predict how they’ll do as teenagers and begin to plan accordingly.” Precision medicine is one of the most promising and meaningful applications of high-performance computing today. “It’s still early days, but we’re moving toward an exciting new era of predictive biology and personalized medicine,” said McManus. “Our panelists gave us a great taste of what’s on the horizon. With continued advances in platform technologies, artificial intelligence, and other areas, we create significant opportunities to increase the science of medicine and ultimately improve human health. Intel is excited to empower scientists and clinicians with technology innovations, resources and expertise as we collaborate to make this new era a reality.” Jan Rowell writes about technology trends in HPC, healthcare, life sciences, and other industries.


News Article | April 25, 2017
Site: www.sciencedaily.com

Adding cisplatin to the standard gemcitabine/nab-paclitaxel drug treatment provided a very high rate of tumor shrinkage for patients with advanced pancreatic cancer, according to the results of a pilot clinical trial conducted by the HonorHealth Research Institute and the Translational Genomics Research Institute (TGen). These statistically significant and clinically meaningful improvements in overall response and survival rates resulted from a phase Ib/II clinical study performed at the HonorHealth Research Institute, a partnership of HonorHealth and TGen. The results were presented during the 2017 Gastrointestinal Cancers Symposium, sponsored by the American Society of Clinical Oncology, in San Francisco. Connecting a global network of more than 40,000 cancer professionals, the society serves as the leading resource for best practices in clinical oncology research and academic and community practices. "After just three treatment cycles, we saw tumor markers plummet and some patients' tumors shrink significantly in just nine weeks," said Gayle Jameson, nurse practitioner and principal investigator of the clinical trial, who is highly encouraged by the response. "After treatment, two patients had no evidence of disease and are alive over three years after starting this regimen. This is very rare with traditional chemotherapy." Dr. Daniel Von Hoff, TGen Distinguished Professor and Physician-in-Chief who devised the clinical trial, agreed: "Although a small study, the high response rate and landmark evolving median survival are very encouraging, and this regimen is being expanded for patients with stage IV pancreatic cancer." Dr. Von Hoff also is chief scientific officer at the HonorHealth Research Institute. Of the 24 evaluable patients (those whose response to a treatment could be measured because enough information was collected) who were enrolled in the study: This pilot clinical trial began in 2013 through a partnership between the HonorHealth Research Institute and TGen. It was funded by Stand Up To Cancer, Mattress Firm, the Arizona Diamondbacks, and the Scottsdale-based Seena Magowitz Foundation. Symptoms of pancreatic cancer usually do not appear until the disease progresses to its late stages, making it difficult to treat. Only about one in four patients survives more than a year after diagnosis, and fewer than 10 percent survive more than five years. Pancreatic cancer this year will take the lives of more than 43,000 Americans, making it the nation's third-leading cause of cancer-related death. The results of this trial are encouraging and deserve additional testing prior to becoming a standard of care for patients with advanced pancreatic cancer. Through research, the HonorHealth Research Institute and TGen aim to provide hope and a better chance for patients to live for years instead of months. The current standard of care for advanced pancreatic cancer -- a combination of nab-paclitaxel and gemcitabine -- was developed by TGen and the HonorHealth Research Institute, and approved by the U.S. Food and Drug Administration in 2013.


CHANDLER, Ariz.--(BUSINESS WIRE)--On May 12, 2017, Governor Doug Ducey signed Arizona’s $9.8 billion 2018-2019 Budget which provides bonding authority for $1 billion for investments in University Research Infrastructure. This investment continues a collaboration between the State of Arizona, Industry Leaders, Philanthropists, and Arizona’s Universities that is driving Arizona towards its goal of becoming a top-tier bioscience state. The Biotechnology Innovation Organization in partnership with TEConomy Partners publishes the biennial report on the economic impact of the bioscience industry that provides a national overview and ranks the 50 states and Puerto Rico across five quintiles or tiers. The 2016 Report, The Value of Bioscience Innovation in Growing Jobs and Improving Quality of Life 2016, was released in June of 2016 at the BIO International Convention in San Francisco. The report includes a wide range of metrics and economic indicators on a national and state basis. As reported in 2016, the top 10 states based on the number of bioscience firms (Tier I) were California, Florida, Illinois, Massachusetts, New Jersey, New York, North Carolina, Pennsylvania, Ohio, and Texas. Could Arizona achieve the growth necessary to reach the top-tiers? Arizona’s leaders began the journey to achieve this goal twenty years ago. In 1997, the Arizona Bioindustry Cluster was founded by Bob Case and Michael E. Berens, Ph.D. laying the foundation for what would become the Arizona Bioindustry Association or AZBio in 2003. Work by the Arizona Legislature and a coalition of community leaders supported voter passage of Proposition 301 in the year 2000. Prop. 301 established a six-tenths of one cent sales tax to support education that included funding for an estimated $1 billion (generated and disbursed over 20 years) for research at Arizona universities. The resulting Technology Research Initiative Fund (TRIF) is administered by the Arizona Board of Regents and has distributed $892 million for the period spanning from 2001-2016 and is well on its way to reach the billion dollar goal by June 30, 2021. The following year, the Flinn Foundation committed to 10 years of major funding for Arizona biosciences and brought together over 100 leaders to begin to craft what would become the Arizona Bioscience Roadmap. Under the stewardship of the Flinn Foundation, the strategic plan for the biosciences in Arizona would include key initiatives along with a commitment to measurement and reporting of the results. The first decade of the new century marked the completion of The Human Genome Project and a new era for life science research and development globally. From 2000 to 2010, Arizona’s Bioscience community activity included the International Genomics Consortium establishing its home in Phoenix and the subsequent creation of the Translational Genomics Research Institute (TGen) which was funded by a $90 million fundraising effort and spun out of IGC. In addition to the funding from Prop. 301, the Arizona legislature approved $440 million for construction of new university research facilities supporting the growth of the Biodesign Institute at Arizona State University, the BIO5 Institute at the University of Arizona, new research facilities at Northern Arizona University and more. An additional $100 million was approved by the voters for bioscience and health care training and facilities at Maricopa Community Colleges. The Virginia G. Piper Charitable Trust committed $50 million to personalized medicine in Arizona and local philanthropists have supported the community with additional resources for research and patient care across the state. Over the last two decades, Arizona’s bioscience industry has focused and grown. Arizona has risen in the rankings to take its place in the second tier of the Bioscience rankings based on number of firms. The Biodesign Institute at Arizona State University has grown from one building to two with a third building under construction. Arizona is now home to the Critical Path Institute, the National Biomarker Development Alliance, the Arizona Alzheimer’s Alliance, the Banner Alzheimer’s Institute, Cancer Treatment Centers of America, and Banner MD Anderson. Barrow Neurological Institute, founded in 1962 as a regional specialty center, has grown into one of the premiere destinations in the world for neurology and neurosurgery. Phoenix Children’s Hospital is now one of the largest children’s hospitals in the country and is ranked in 10 out of 10 specialties. Mayo Clinic has expanded its research and patient care capacity, added proton beam capabilities and will welcome the first class to its Arizona-based Mayo Medical School in 2017. The University of Arizona extended its reach from Tucson to Phoenix which now includes the The University of Arizona College of Medicine-Phoenix and the The University of Arizona Cancer Center at Dignity Health St. Joseph's Hospital and Medical Center on the Phoenix Biomedical Campus. The number of life science companies in Arizona is now over 1,400 and multi-billion dollar exits include the sale of Ventana Medical Systems, Inc. to Roche for $3.4 Billion and Abraxis Biosciences for $2.9 billion to Celgene. Today, companies that were born in Arizona are now publicly traded including Insys, HTG Molecular, and SensTech while others have been acquired by AMAG Pharmaceuticals, Caris Diagnostics, Thermo Fischer, IMS Health, Merz, Stryker and more. These companies have continued to grow in Arizona joining global leaders including BARD, Medtronic, and W.L. Gore. The combined benefits of Arizona’s world-class healthcare institutions and diverse population demographics are driving the number of active clinical trials in the state which have more than doubled over the period from 2012 – 2017 based on data at ClinicalTrials.gov. Long-time residents and new industry partners are benefiting from Arizona’s business-friendly public policy and regulatory environment, affordable operating cost structures, stable and reliable energy suppliers, well-managed water resources, talent, and an affordable cost of living in communities that provide their employees the opportunity for an excellent quality of life. Free from the business disruptions that can be caused by earthquakes, hurricanes, tornadoes, and floods, Arizona has become a go-to site for both high-tech manufacturing and corporate data centers. The Arizona Innovation Challenge, which made its first awards in 2011 and is powered by the Arizona Commerce Authority, awards the most money in the country for a technology commercialization challenge – $3 million ($1.5 million twice yearly) to the world’s most promising technology ventures. Awards range from $100,000 to $250,000 per company. Over this 20-year span, Arizona has gained a reputation as the state with the “collaborative gene” and attracts thought leaders looking to discover, develop, and deliver life-changing and life-saving innovations to patients. Globally recognized thought leaders have left the hallowed halls of Harvard, the National Institutes of Health and other world-class institutions to innovate and collaborate in Arizona. One real-world example of this collaboration is Arizona State University’s International School of Biomedical Diagnostics. A global center for research, teaching and service in the emerging field of biomedical diagnostics, the school pulls expertise from faculty across ASU, in collaboration with Dublin City University (DCU), Ventana Medical Systems, and other industry partners. ASU faculty come from: the Biodesign Institute, College of Health Solutions, Ira A. Fulton Schools of Engineering, School of Life Sciences in the College of Liberal Arts and Sciences, the W. P. Carey School of Business, and the Consortium for Science, Policy & Outcomes. The initiative also leverages the expertise of the National Biomarker Development Alliance that is led by ASU. Under the leadership of President Michael Crow, Arizona State University has been named the Most Innovative University in the United states for two years running and out-ranking Stanford and MIT. Throughout the Arizona Bioscience Roadmap’s first decade, Battelle tracked performance data that was released annually by the Flinn Foundation. The performance metrics released in 2014 serve as the benchmark for the second decade of the Roadmap, with new data reported on a biennial basis. The most current data is available in “2015 Progress of the Biosciences in Arizona,” a report produced by TEConomy Partners (a spinoff of Battelle) that was released in March 2016. The Flinn Foundation will continue to track the progress of the bioscience sector each year by highlighting the state’s major developments. In April of 2017, the Flinn Foundation released its most recent update, the 2016 Progress of the Biosciences in Arizona. Could Arizona achieve the growth necessary to reach the top-tiers? Absolutely. Now, twenty years into the process, Arizona’s Bioindustry has a new funding catalyst. With the Governor’s vision and the Legislature’s support, an additional $1 billion dollars will be invested in university research infrastructure beginning in July of 2018. Arizona’s leaders are already discussing what the next iteration of Prop. 301 will look like as it approaches its renewal on or before 2020. The Arizona Legislature has passed HB2191 which authorizes an additional $10 million in Angel Investor Tax Credits spread over the next four years and SB1416 which continues Arizona’s Quality Jobs Tax Credit, Arizona's Research and Development Tax Credits and other business incentives. Both bills have been sent to the Governor for his signature. Arizona’s leaders are continuing the journey to take the state into the top tiers of the bioscience rankings. The Flinn Foundation has extended its commitment to steward the Arizona Bioscience Roadmap through the year 2025 with the support of the 100-person Arizona Bioscience Roadmap Steering Committee and the Arizona Bioindustry Association (AZBio) Board of Directors is committed to the vision of making Arizona a top-tier bioscience state and works collaboratively to make that vision a reality. A key component in Arizona’s life science ecosystem, the Arizona Bioindustry Association (AZBio) is the only statewide organization exclusively focused on Arizona’s bioscience industry. AZBio membership includes patient advocacy organizations, life science innovators, educators, healthcare partners, municipalities and leading business organizations. AZBio is the statewide affiliate of the Biotechnology Innovation Organization (BIO) and works in partnership with AdvaMed, MDMA, and PhRMA to advance innovation and to ensure that the value delivered from life-changing and life-saving innovation benefits people in Arizona and around the world. For more information visit www.AZBio.org and www.AZBio.TV To learn more about Arizona’s Bioindustry:


News Article | July 24, 2017
Site: www.eurekalert.org

First of its kind study may lead to new era of Alzheimer's drug discovery and therapeutic targets Alzheimer's disease tragically ravages the brains, memories and ultimately, personalities of its victims. Now affecting 5 million Americans, Alzheimer's disease is the sixth leading cause of death in the U.S., and a cure for Alzheimer's remains elusive, as the exact biological events that trigger it are still unknown. In a new study published today, Arizona State University-Banner Health neuroscientist Salvatore Oddo and his colleagues from Phoenix's Translational Genomics Research Institute (TGen) -- as well as the University of California, Irvine, and Mount Sinai in New York -- have identified a new way for brain cells to become fated to die during Alzheimer's diseases. The research team has found the first evidence that the activation of a biological pathway called necroptosis, which causes neuronal loss, is closely linked with Alzheimer's severity, cognitive decline and extreme loss of tissue and brain weight that are all advanced hallmarks of the disease. "We anticipate that our findings will spur a new area of Alzheimer's disease research focused on further detailing the role of necroptosis and developing new therapeutic strategies aimed at blocking it," said Oddo, the lead author of this study, and scientist at the ASU-Banner Neurodegenerative Disease Research Center at the Biodesign Institute and associate professor in the School of Life Sciences. The findings appear in the advanced online edition of Nature Neuroscience. Necroptosis, which causes cells to burst from the inside out and die, is triggered by a triad of proteins. It has been shown to play a central role in multiple sclerosis and Lou Gehrig' disease (amyotrophic lateral sclerosis, or ALS), and now for the first time, also in Alzheimer's disease. "There is no doubt that the brains of people with Alzheimer's disease have fewer neurons," said Oddo. "The brain is much smaller and weighs less; it shrinks because neurons are dying. That has been known for 100 years, but until now, the mechanism wasn't understood." Necroptosis was first identified as a result of inflammation, a common malady in Alzheimer's. Three critical proteins are involved in the initiation of necroptosis, known as RIPK1, RIPK3 and MLKL. The study describes a key event in the process of necroptosis when RIPK1 and RIPK3 form a filamentous structure known as the necrosome. The formation of the necrosome appears to jump-start the process of necroptosis. It activates MLKL, which affects the cell's mitochondria, eventually leading to cell death. Winnie Liang, TGen assistant professor, director of TGen Scientific Operations and director of TGen's Collaborative Sequencing Center, said MLKL executes necroptosis to ultimately cause cell death. "In this study, we show for the first time that necroptosis is activated in Alzheimer's disease, providing a plausible mechanism underlying neuronal loss in this disorder," said Liang, who contributed to the study's gene expression analyses. To explore necroptosis, the research team utilized multiple cohorts of human samples obtained from the Brain and Body Donation Program at the Banner Sun Health Research Institute and Mount Sinai VA Medical Center Brain Bank. First, they measured RIPK1, RIPK3 and MLKL in a specific region of the brain that is typically ravaged by cell loss during the advance of Alzheimer's disease -- the temporal gyrus. Results showed that during necroptosis, these markers were increased in the brains of people with Alzheimer's disease. Next, they identified the molecular cascade of necroptosis activation, with RIPK1 activating RIPK3 by binding with it. This protein complex then binds to and activates MLKL. Analysis of mRNA and protein revealed elevated levels of both RIPK1 and MLKL in the postmortem brain tissues of patients with Alzheimer's when compared with normal postmortem brains. Furthermore, they also demonstrated that necroptosis activation correlated with the protein tau. Intriguingly, necroptosis did not appear to be linked with the other chief physiological characteristic of Alzheimer's pathology, beta-amyloid plaque. To assess the relationship between necroptotic protein levels and cognitive health, the study revisited the scores of patients whose postmortem brain tissue was evaluated for necroptosis. Results showed a significant association between RIPK1, MLKL and diminished scores on the Mini-Mental State Examination (MMSE), a widely used test measuring cognitive health. Given the established relationship between necroptosis and Alzheimer's pathology, including cell loss and attendant cognitive deficit, the study sought to inhibit the process to study the dynamic effects on cell death and memory loss. With such experiments not possible in people, the team demonstrated in a mouse model of the disease that lowering the activation of the necroptosis pathway reduces cell loss and improves performance in memory-related tasks, offering new hope for human therapeutics to halt or reverse the effects of Alzheimer's. The results reveal that the inhibition of necroptosis activation through the blockage of RIPK1 prevents cell loss in mice. Compellingly, mice with inhibited activation of necroptosis pathways performed significantly better in tests of spatial memory involving navigation through a water maze. The study opens a new window on Alzheimer's research and offers hope for therapies targeting cell loss in the brain, an inevitable and devastating outcome of Alzheimer's progression. Oddo stresses that RIPK1, RIPK3 and MLKL are among many potential drug targets, and others will likely follow as the links between necroptosis and Alzheimer's become clearer. While multiple causes of the disease are likely, understanding more clearly all targets that trigger disease will offer the best hope since neuronal loss has been found in people more than a decade before any symptoms of dementia. "One may not agree as to which molecules trigger Alzheimer's disease, " said Oddo, "but everybody agrees that the end result is the neuronal loss. If you can prevent that you may have a beneficial effect." This work was supported by grants from the Arizona Alzheimer's Consortium and the National Institutes of Health (R01 AG037637) to Salvatore Oddo, and R01 NS083801 and P50 AG016573 to Kim Green. Data for the RIPK1 causal regulatory gene network were generated from postmortem brain tissue collected through the Mount Sinai VA Medical Center Brain Bank and were provided by Dr. Eric Schadt from Mount Sinai School of Medicine. The computational resources and staff expertise provided by the Department of Scientific Computing at the Icahn School of Medicine at Mount Sinai also contributed to the performance of this research. 3 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. 4Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA. About the Biodesign Institute at Arizona State University The Biodesign Institute plays a critical role in advancing the research mission of Arizona State University, a comprehensive metropolitan university that is the second largest in the U.S. The Biodesign Institute embodies the guiding principles of the New American University, as defined by Arizona State University President Michael Crow, specifically, to conduct use-inspired research, fuse intellectual disciplines and value entrepreneurship.The Biodesign Institute at ASU addresses today's critical global challenges in healthcare, sustainability and security by developing solutions inspired from natural systems, translating solutions into commercially viable products and clinical practices. For more information, go to: http://www. Follow Biodesign on Facebook, Twitter, LinkedIn or Instagram. Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. TGen is focused on helping patients with neurological disorders, cancer, diabetes, and infectious diseases, through cutting edge translational research (the process of rapidly moving research towards patient benefit). TGen physicians and scientists work to unravel the genetic components of both common and rare complex diseases in adults and children. Working with collaborators in the scientific and medical communities literally worldwide, TGen makes a substantial contribution to help our patients through efficiency and effectiveness of the translational process. TGen is allied with City of Hope, a world-renowned independent research and cancer and diabetes treatment center. This precision medicine alliance enables both institutes to complement each other in research and patient care, with City of Hope providing a significant clinical setting to advance scientific discoveries made by TGen. For more information, visit: http://www. . Follow TGen on Facebook, LinkedIn and Twitter @TGen. The Banner Sun Health Research Institute Brain and Body Donation Program of Sun City, Arizona is a world leading, community-based resource to advance our understanding of neurodegenerative diseases. The Brain and Body Donation Program is supported by the National Institute of Neurological Disorders and Stroke (U24 NS072026 National Brain and Tissue Resource for Parkinson's Disease and Related Disorders), the National Institute on Aging (P30 AG19610 Arizona Alzheimer's Disease Core Center), the Arizona Department of Health Services (contract 211002, Arizona Alzheimer's Research Center), the Arizona Biomedical Research Commission (contracts 4001, 0011, 05-901 and 1001 to the Arizona Parkinson's Disease Consortium) and the Michael J. Fox Foundation for Parkinson's Research.


PHOENIX, Ariz. -- July 5, 2017 -- Teleia Taumanu, a senior at Mesa's Red Mountain High School, is doing something fishy this summer at the Translational Genomics Research Institute (TGen). As part of the nationwide 2017 Emperor Science Award program, an initiative designed to encourage high school students to explore careers in science, Teleia will work as a summer intern under the guidance of TGen Professor Dr. Haiyong Han, advancing the study of pancreatic cancer by caring for the laboratory's experimental zebrafish. She is one of 100 high school students nationwide receiving awards in the program, which extends the learning and outreach from the PBS documentary, Ken Burns Presents CANCER: THE EMPEROR OF ALL MALADIES A Film by Barak Goodman. The documentary is based on the Pulitzer Prize-winning book by Dr. Siddhartha Mukherjee. Teleia was searching for a research topic to pursue in class when she happened upon a TED Talk video by Dr. Mukherjee. Combined with the urging of Katy Gaza, a Biotech instructor at her high school, Teleia was encouraged to apply for the Emperor Science Award program, which is presented by Stand Up To Cancer (SU2C), the Entertainment Industry Foundation, and PBS LearningMedia. "Nearly 1,600 people die each day from cancer, and in spring of 2015 my dearest aunt was one of these people. It is easy to repeat these numbers and hand out these statistics, but perhaps we forget that these numbers are people, and these people have families," she wrote in her winning application essay. "The pain of my aunt's death struck numerous things within me and the crying didn't stop for months, but it also struck a curiosity," Teleia wrote. "A curiosity of this disease that demolished her body, robbed her of her youth ... a curiosity for its ... weaknesses and habits. An ambition for a cure." Dr. Han said Teleia would learn about the care and feeding of zebrafish, about the research concepts in studying cancer, and how to form, prove -- or disprove -- a hypothesis. "We at TGen are fortunate to have a student like Teleia with the energy and curiosity to explore new frontiers in investigating cancer," said Dr. Han. Teleia, 16, already has her own line of inquiry about the workings of the gene p53, whose activation is linked to how cells repair damage to DNA. "I figured, why not try something a little challenging," she said. "I plan to continue this research into my senior year of high school." The Emperor Science Award program, now in its second year, is committed to helping all students that have a passion for science join the next generation of cancer researchers by pairing them with university-level mentoring scientists to collaborate on an important cancer research project. "From the outset, it was an important goal for the documentary not only to inform, but also to engage and empower young people to pursue scientific careers, particularly in cancer research," said SU2C co-founder Sherry Lansing, who led the committee that conceived and implemented the plan for this program. In addition to working with a cancer researcher mentor, the winning students receive a Google Chromebook and a $1,500 stipend. Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. TGen is focused on helping patients with neurological disorders, cancer, diabetes, and infectious diseases, through cutting edge translational research (the process of rapidly moving research towards patient benefit). TGen physicians and scientists work to unravel the genetic components of both common and rare complex diseases in adults and children. Working with collaborators in the scientific and medical communities literally worldwide, TGen makes a substantial contribution to help our patients through efficiency and effectiveness of the translational process. TGen is allied with City of Hope, a world-renowned independent research and cancer and diabetes treatment center. This precision medicine alliance enables both institutes to complement each other in research and patient care, with City of Hope providing a significant clinical setting to advance scientific discoveries made by TGen. For more information, visit: http://www. . Follow TGen on Facebook, LinkedIn and Twitter @TGen.


News Article | February 28, 2017
Site: www.eurekalert.org

SCOTTSDALE, Ariz. -- Feb. 28, 2017 -- Colleen's Dream Foundation, a Scottsdale-based nonprofit, today announced a $30,000 grant to the Translational Genomics Research Institute (TGen) to research new ways of treating ovarian cancer. The grant will help fund research that builds on TGen's discovery that mutations in a gene known as SMARCA4 drive a specific type of extremely aggressive ovarian cancer -- Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT) -- which most often affects girls and young women. TGen researchers have identified a drug called triptolide -- a derivative of an ancient Chinese medicinal plant known as "thunder god vine" -- which laboratory tests show is potentially effective against a variety of cancer types. The Colleen's Dream grant will enable TGen to test triptolide as a potential drug targeting SCCOHT and other subtypes of ovarian cancer. "We are excited about TGen's research and hope this grant proves useful in TGen's quest to discover new and more effective ways to treat ovarian cancer," said Nicole Cundiff, CEO and co-founder of Colleen's Dream Foundation. "Together, we can help change the ovarian cancer landscape for women across the world." Colleen's Dream is named after Nicole's mother, Colleen Drury, who succumbed to ovarian cancer in 2013. Since its inception in 2012, Colleen's Dream has given nearly $600,000 in grants supporting more than a dozen ovarian cancer research projects. TGen's research will focus on the hypothesis that ovarian cancers, and other cancer types, are triggered in the human genome by large complexes of regulatory proteins known as super-enhancers. "Super-enhancers are master regulators of genetic networks that are critical for cancer growth," said Dr. Will Hendricks, an Assistant Professor in TGen's Integrated Cancer Genomics Division. "We believe that triptolide could disrupt the super-enhancer networks that promote SCOOHT and possibly other subtypes of ovarian cancer." TGen's research is expected to improve the understanding of ovarian cancer biology, unveil the anti-cancer mechanisms of triptolide, and support the eventual development of clinical trials that could immediately help ovarian cancer patients. As part of an initial pilot project, TGen will test the effects of triptolide against ovarian cancers bearing specific genetic mutations. They will also evaluate the ability of triptolide to enhance the effectiveness of therapies currently used to treat ovarian cancers. "There is a tremendous need for new ovarian cancer treatments," said Dr. Jessica Lang, a TGen Postdoctoral Fellow in Dr. Hendricks' lab, specializing in ovarian cancer. "We hope that our work with this novel anti-cancer drug may be making inroads towards improving outcomes for these patients." Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. TGen is focused on helping patients with neurological disorders, cancer, and diabetes, through cutting edge translational research (the process of rapidly moving research towards patient benefit). TGen physicians and scientists work to unravel the genetic components of both common and rare complex diseases in adults and children. Working with collaborators in the scientific and medical communities literally worldwide, TGen makes a substantial contribution to help our patients through efficiency and effectiveness of the translational process. TGen is allied with City of Hope, a world-renowned independent research and cancer and diabetes treatment center. This precision medicine alliance enables both institutes to complement each other in research and patient care, with City of Hope providing a significant clinical setting to advance scientific discoveries made by TGen. For more information, visit: http://www. . Follow TGen on Facebook, LinkedIn and Twitter @TGen. Colleen's Dream is a qualified 501(c)(3) nonprofit organization founded in 2012 by Nicole Cundiff and her husband, Billy, a 12-year veteran kicker in the NFL. Colleen's Dream is dedicated to funding investigational scientific research with the primary goal of developing and establishing an accurate and accessible early detection test for ovarian cancer. For more information about Colleen's Dream Foundation, or to donate call (480) 269-2266 or visit http://www. .


BOSTON--(BUSINESS WIRE)--The Seena Magowitz Foundation for Pancreatic Cancer Research will hold its 15th annual Seena Magowitz Golf Classic in Boston from Aug. 26-28, 2017. The Golf Classic has earned the distinction of being one of the most well-known and influential charity fundraising events that exclusively benefits pancreatic cancer research at the Translational Genomics Research Institute (TGen). Much more than a golf tournament, the annual Seena Magowitz Golf Classic is three days of fun-filled events that will draw several hundred people from across the country to Boston this year. During the events, participants from all walks of life – including medical experts, patients, sponsors, donors and guests – come together with one goal in mind: to quicken the pace of medical research that will ultimately conquer pancreatic cancer. This brutal disease has the worst survival rate of all tumor-type cancers, and has now surpassed breast cancer to become the third leading cause of cancer deaths. Mattress industry veteran Roger E. Magowitz founded the Seena Magowitz Foundation in honor of his mother, Seena, who lost her battle to pancreatic cancer in 2001. Thanks to sizable donations from both individuals and companies who support the Seena Magowitz Foundation, TGen has been able to make pancreatic cancer research advancements that have shown great promise for tripling the five-year survival rate. “The greatest gift we can give to warriors who lost a battle to pancreatic cancer is to find a cure for this terrible disease,” Magowitz said. “Until our ultimate mission is attained, we’re bringing an unbridled energy to advancing earlier diagnosis and extending quality of life through improved treatments." Dr. Daniel Von Hoff, TGen’s Distinguished Professor and Physician-in-Chief, recently teamed up with HonorHealth in a pilot clinical trial study for pancreatic cancer called the TGen Triple. As a result of the study, they uncovered a nearly 70 percent positive response of tumor shrinkage for patients with advanced late-stage pancreatic cancer. In fact, two participants showed no evidence of a tumor. This pilot clinical trial study was funded in part by The Seena Magowitz Foundation and Mattress Firm. “There has been a lot of progress recently toward our shared mission of curing pancreatic cancer,” said Dr. Von Hoff. “Not too long ago, one-year survivorship for pancreatic cancer ranged between 9 and 18 percent. I am pleased to say that today, thanks to the support that TGen has received to date, one-year survivorship stands at 65 percent, which also means patients surviving one year now have a better chance of surviving two, three, four, or even five years.” Building upon the groundswell of enthusiasm for TGen’s biomedical breakthroughs, Ken Murphy, President and CEO of Mattress Firm and Honorary Chair of this year’s Seena Magowitz Golf Classic, has recruited three home furnishings industry leaders to the event’s fundraising network. They include: Momentum is building as new pancreatic cancer donors commit to the cause, and past donors increase their unwavering support for this summer’s Seena Magowitz Golf Classic. Karl Glassman, President and CEO of Leggett & Platt — who previously served as the Golf Classic's honorary chair and is a member of TGen’s National Advisory Council for Pancreatic Cancer Research — has not only pledged to double his company’s donation, but he also plans to double the personal contribution that he and his wife, Cathi, will make this year. “With TGen’s Dr. Von Hoff putting the pedal to the metal, we are witnessing some amazing progress against this dreaded disease,” Glassman said. “Now that we are advancing at a more rapid pace toward the light at the end of the tunnel, we are all more incentivized to contribute more funding to help find methods of early diagnosis, extending quality of life, and ultimately a cure.” 15th Annual Seena Magowitz Golf Classic August 26-28, 2017 Venue Headquarters: Boston Harbor Hotel in Boston Honorary Chair: Ken Murphy, President and CEO of Mattress Firm Master of Ceremonies: Derrick Hall, President and CEO of the Arizona Diamondbacks Keynote Speaker: Dr. Daniel Von Hoff, Distinguished Professor and Physician-in-Chief, TGen Explore event details and sponsorship opportunities at: www.seenamagowitzfoundation.org/annual-seena-magowitz-golf-classic. Prospective sponsors, participants and dinner attendees may contact: Roger E. Magowitz at 602-524-7636 or roger@seenamagowitzfoundation.org; or Liz McBeth, event director, at 757-773-3622 or liz@seenamagowitzfoundation.org. About the Seena Magowitz Foundation The Seena Magowitz Foundation is a 501(c)(3) non-profit organization committed to advancing the awareness and eventual prevention and cure of pancreatic cancer. The Foundation is dedicated to funding top medical institutions on the leading edge of translational pancreatic cancer research, and is committed to early diagnosis and advancing life-extending treatment options, with the ultimate goal of eradicating this deadly killer. For more information, visit: www.seenamagowitzfoundation.org. About TGen Translational Genomics Research Institute (TGen) is a Phoenix-based non-profit organization dedicated to conducting groundbreaking research with life-changing results. TGen is focused on helping patients with neurological disorders, cancer, and diabetes, through cutting edge translational research (the process of rapidly moving research towards patient benefit). TGen physicians and scientists work to unravel the genetic components of both common and rare complex diseases in adults and children. Working with collaborators in the scientific and medical communities worldwide, TGen makes a substantial contribution to help patients through efficiency and effectiveness of the translational process. TGen is allied with City of Hope, a world-renowned independent research and cancer and diabetes treatment center. This medicine alliance enables both institutes to complement each other in research and patient care, with City of Hope providing a significant clinical setting to advance scientific discoveries made by TGen. For more information, visit: www.tgen.org.


News Article | May 23, 2017
Site: www.marketwired.com

LOS ALTOS, CA--(Marketwired - May 23, 2017) - Portworx, the leading provider of container data services for DevOps, today announced that is has been named to the list of "Cool Vendors" in the Gartner "Cool Vendors in Storage Technologies, 2017" report by Dave Russell, Arun Chandrasekaran, Julia Palmer, Raj Bala, Alan Dayley, Pushan Rinnen and Garth Landers at Gartner, Inc. Per the report's authors, "As infrastructure and operations (I&O) teams struggle to meet the demand for increased storage capacity, I&O leaders focused on storage will need to explore innovative technologies to support evolving business requirements." The vendors included in this research report are disruptive private storage vendors recognized for their abilities to address common pain points. The report also provides recommendations for I&O leaders focused on infrastructure agility: "It has become painfully evident that storage capacity demands, and expectations for far more rapid provisioning of that storage, have far outpaced the ability of I&O team's capabilities," according to the report. The analysts go on to state, "We have chosen the five disruptive private storage vendors highlighted in this research because they exemplify innovative approaches to addressing the top storage pain point of managing data growth to support business demands. These vendors accomplish this through automated, scalable storage solutions across a variety of workloads and use cases." Portworx is the solution for stateful containers, designed for DevOps. With Portworx, users can manage any database or stateful service on any infrastructure using any container scheduler, including Kubernetes, Mesosphere DC/OS, and Docker Swarm. Portworx solves the five most common problems DevOps teams encounter when running containerized databases and other stateful services in production: persistence, high availability, data automation, support for multiple data stores and infrastructure, and security. Portworx technology is ideally suited for solution verticals such as databases, messaging queues, continuous integration and continuous deployment (CICD), big data, and content management. "The insights in the Gartner Cool Vendors report are consistent with feedback from our growing base of Fortune 1000 customers, which include GE Digital, Lufthansa Airlines and TGen," said Murli Thirumale, co-founder and CEO, Portworx. "Persistent storage is a major challenge as enterprises deploy stateful containers in production. Portworx addresses this challenge head-on by enabling customers to run any stateful containerized app on any infrastructure with any scheduler." To read the full Gartner Cool Vendors in Storage Technology 2017 report visit: http://www.gartner.com/reprints/portworx?id=1-404ZX84&ct=170512&st=sb Gartner Disclaimer Gartner does not endorse any vendor, product or service depicted in our research publications, and does not advise technology users to select only those vendors with the highest ratings or other designation. Gartner research publications consist of the opinions of Gartner's research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose.


News Article | May 8, 2017
Site: www.eurekalert.org

PHOENIX, Ariz. -- May 8, 2017 -- Dr. Daniel Von Hoff -- Distinguished Professor, Physician-In-Chief, and Director of Molecular Medicine at the Translational Genomics Research Institute (TGen) -- will receive a gold medal for excellence in clinical medicine from his alma mater, Columbia University. Columbia University College of Physicians and Surgeons Alumni Association will present the award May 13 in New York City to Dr. Von Hoff, a world-renowned expert in new therapies for patients with cancer. "This medal represents the highest honor which the Alumni Association can bestow in recognition of your outstanding accomplishments," said Dr. Kenneth A. Forde, chair of the P&S Alumni Association Honors and Awards Committee, which represents some of the nation's most accomplished medical professionals. This year marks the 250th anniversary of P&S, and its founding as the first medical school in Colonial America to award an Medical Doctorate degree. "This recognition is especially gratifying as it is being presented by notable fellow graduates of my medical school, and I am deeply humbled and appreciative to be counted among those devoted to the welfare of patients," said Dr. Von Hoff, who has been instrumental in developing numerous new cancer treatments. He also is a Senior Consultant-Clinical Investigations for City of Hope, Chief Scientific Officer at HonorHealth Research Institute, and Professor of Medicine at Mayo Clinic. Dr. Von Hoff currently co-leads an international Stand Up To Cancer (SU2C) Pancreatic Cancer Dream Team, developing new treatments for this disease. It is one of three SU2C Dream Team grants awarded to TGen. He graduated cum laude from Carroll University (1969), and received his M.D. from Columbia University College of Physicians and Surgeons (1973). He completed his internship and residency in internal medicine at the University of California, San Francisco, then completed a medical oncology fellowship at the National Cancer Institute. Dr. Von Hoff is a past director of the University of Arizona's Arizona Cancer Center. He also is a past board member and president of the American Association for Cancer Research (AACR), a Fellow of the AACR, and recipient of the distinguished AACR Richard and Hinda Rosenthal Memorial Award. In addition, he is a past board member of the American Association of Clinical Oncology (ASCO) and winner of its prestigious David A. Karnofsky Memorial Award for outstanding contributions to patient care and treatment. He served a six-year term on President Bush's National Cancer Advisory Board (2004-10); is a recipient of the Wallace A. Reed M.D. Award, recognizing his accomplishments in advancing innovative cancer treatments, from the Arizona Medical Association; and received the Award of Excellence from the Hope Funds for Cancer Research, for his work in the clinical development of many new cancer treatments. Dr. Von Hoff and his colleagues have conducted early clinical investigations of many new cancer agents, including: gemcitabine, docetaxel, paclitaxel, topotecan, irinotecan, nanoliposomal irinotecan, fludarabine, mitoxantrone, dexrazoxane, nab-paclitaxel, vismodegib, and others. These treatments are helping many patients with breast, ovarian, prostate, colon, leukemia, advanced basal cell and pancreatic cancers. Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. TGen is focused on helping patients with neurological disorders, cancer, and diabetes, through cutting edge translational research (the process of rapidly moving research towards patient benefit). TGen physicians and scientists work to unravel the genetic components of both common and rare complex diseases in adults and children. Working with collaborators in the scientific and medical communities literally worldwide, TGen makes a substantial contribution to help our patients through efficiency and effectiveness of the translational process. TGen is allied with City of Hope, a world-renowned independent research and cancer and diabetes treatment center. This precision medicine alliance enables both institutes to complement each other in research and patient care, with City of Hope providing a significant clinical setting to advance scientific discoveries made by TGen. For more information, visit: http://www. . Follow TGen on Facebook, LinkedIn and Twitter @TGen.

Loading TGen collaborators
Loading TGen collaborators