Time filter

Source Type

San Marcos, TX, United States

The Texas State University System was created in 1911 to oversee the state's normal schools. Since its creation it has broadened its focus and comprises institutions of many different scopes. It is the oldest university system in Texas. The system is unique to Texas because it is the only horizontal state university system; the system does not have a flagship institution and considers each university to be unique in its own way. Over the years, several member schools have joined the TSUS or moved to other university systems. The Texas State University System saw its largest growth in 1995 when the Lamar University System was incorporated into the TSUS. The incorporation saw four schools join the system: Lamar University, Lamar Institute of Technology, Lamar State College-Orange, and Lamar State College-Port Arthur. Today, the system encompasses eight institutions.The system is headquartered in the Thomas J. Rusk State Office Building at 200 East 10th Street, Suite 600, in Downtown Austin.The Texas State University System is governed by a nine member Board of Regents appointed by the Texas Governor. In addition, a nonvoting student regent is appointed annually to the Board. The administration is headed by a board-appointed Chancellor, who is based in Austin. The Board of Regents has the following members: Charlie Amato , Donna N. Williams , Dr. Jaime Garza, Kevin J. Lilly, Ron Mitchell, David Montagne, Trisha Pollard, Rossanna Salazar, Michael Truncale and Ryan Bridges . Wikipedia.

Brunson E.K.,Texas State University

BACKGROUND AND OBJECTIVE: Parents decide whether their children are vaccinated, but they rarely reach these decisions on their own. Instead parents are in fluenced by their social networks, broadly defined as the people and sources they go to for information, direction, and advice. This study used social network analysis to formally examine parents' social networks (people networks and source networks) related to their vaccination decision-making. In addition to providing descriptions of typical networks of parents who conform to the recommended vaccination schedule (conformers) and those who do not (nonconformers), this study also quantified the effect of network variables on parents' vaccination choices. METHODS: This study took place in King County, Washington. Participation was limited to US-born, fi rst-time parents with children aged ≤18 months. Data were collected via an online survey. Logistic regression was used to analyze the resulting data. RESULTS: One hundred twenty-six conformers and 70 nonconformers completed the survey. Although people networks were reported by 95% of parents in both groups, nonconformers were significantly more likely to report source networks (100% vs 80%, P < .001). Model comparisons of parent, people, and source network characteristics indicated that people network variables were better predictors of parents' vaccination choices than parents' own characteristics or the characteristics of their source networks. In fact, the variable most predictive of parents' vaccination decisions was the percent of parents' people networks recommending nonconformity. CONCLUSIONS: These results strongly suggest that social networks, and particularly parents' people networks, play an important role in parents' vaccination decision-making. Copyright © 2013 by the American Academy of Pediatrics. Source

By controlling the pre-treatment of biomass materials and pyrolysis conditions, silica samples with various surface areas and levels of crystallinity were synthesized. With proper treatment, biogenic silica nanoaggregate (25-30 nm in diameter) can be synthesized from biomass materials. The characterizations revealed that the silica nanoaggregates were composed of smaller primary silica nanoparticles (ca. 4.2 nm in diameter). Under controlled melting catalyzed by metal salt cations, the silica nanoaggregates may be fuse to form semi-crystalline porous silica frameworks with tunable pore size and structural integrity. Organosilicon complexes were synthesized from the bio derived silica nanoaggregates.

A method of determining antimicrobial activity of an agent can include providing a well, wherein the well contains at least one antimicrobial agent, the well further including at least two electrodes. A sample of a microbe can be added into the well and a voltage pulsed between the electrodes. An electrical property can be sampled and recorded. In another aspect, a method of identifying at least one microbe includes taking a sample containing the at least one microbe, isolating the at least one microbe from the sample, dividing the at least one microbe into at least one well, wherein each well contains at least one antimicrobial agent and at least two electrodes. A voltage is pulsed between the at least two electrodes, an electrical property is sampled during the pulsing and recorded. In another aspect, a diagnostic device for detecting at least one microbe is presented.

Methods for forming a vertically movable gate field effect transistor (VMGFET) on a silicon-on-insulator (SOI) wafer are described. The methods include providing a process of making VMGFET devices without critical alignment of masks between sequential etch and diffusion steps. The oxide layer of the SOI wafer is used for a self-limiting etch stop layer and for a sacrificial layer to form an insulating layer between a gate electrode and a substrate. The proper location of the gate electrode with respect to the source and drain junctions is insured by using a silicon gate structure as a mask layer for the diffusion process for defining the source and drain junctions.

Texas State University | Date: 2013-10-22

A method includes estimating a parametric model for a round-trip time sequence for an electronic transmission over a network. Optimization calculations may be performed to dynamically determine a bound (for example, a lower bound) on re-transmission timeout for an electronic transmission to be conducted over the network.

Discover hidden collaborations