Jackson, WY, United States
Jackson, WY, United States

Time filter

Source Type

Collins B.M.,U.S. Department of Agriculture | Collins B.M.,University of California at Berkeley | Das A.J.,U.S. Geological Survey | Battles J.J.,University of California at Berkeley | And 3 more authors.
Ecological Applications | Year: 2014

Fuel treatment implementation in dry forest types throughout the western United States is likely to increase in pace and scale in response to increasing incidence of large wildfires. While it is clear that properly implemented fuel treatments are effective at reducing hazardous fire potential, there are ancillary ecological effects that can impact forest resilience either positively or negatively depending on the specific elements examined, as well as treatment type, timing, and intensity. In this study, we use overstory tree growth responses, measured seven years after the most common fuel treatments, to estimate forest health. Across the five species analyzed, observed mortality and future vulnerability were consistently low in the mechanical-only treatment. Fire-only was similar to the control for all species except Douglas-fir, while mechanical-plus-fire had high observed mortality and future vulnerability for white fir and sugar pine. Given that overstory trees largely dictate the function of forests and services they provide (e.g., wildlife habitat, carbon sequestration, soil stability) these results have implications for understanding longer-term impacts of common fuel treatments on forest resilience. © 2014 by the Ecological Society of America


Riginos C.,Teton Research Institute | Karande M.A.,Princeton University | Rubenstein D.I.,Princeton University | Palmer T.M.,University of Florida
Ecology | Year: 2015

Invasive species can indirectly affect ecosystem processes via the disruption of mutualisms. The mutualism between the whistling thorn acacia (Acacia drepanolobium) and four species of symbiotic ants is an ecologically important one; ants strongly defend trees against elephants, which can otherwise have dramatic impacts on tree cover. In Laikipia, Kenya, the invasive big-headed ant (Pheidole megacephala) has established itself at numerous locations within the last 10-15 years. In invaded areas on five properties, we found that three species of symbiotic Crematogaster ants were virtually extirpated, whereas Tetraponera penzigi co-occurred with P. megacephala. T. penzigi appears to persist because of its nonaggressive behavior; in a whole-tree translocation experiment, Crematogaster defended host trees against P. megacephala, but were extirpated from trees within hours. In contrast, T. penzigi retreated into domatia and withstood invading ants for >30 days. In the field, the loss of defensive Crematogaster ants in invaded areas led to a five- to sevenfold increase in the number of trees catastrophically damaged by elephants compared to un-invaded areas. In savannas, tree cover drives many ecosystem processes and provides essential forage for many large mammal species; thus, the invasion of big-headed ants may strongly alter the dynamics and diversity of East Africa's whistling thorn savannas by disrupting this system's keystone acacia-ant mutualism. © 2015 by the Ecological Society of America.


Oriol-Cotterill A.,University of California at Berkeley | Valeix M.,University Claude Bernard Lyon 1 | Frank L.G.,University of California at Berkeley | Riginos C.,Teton Research Institute | Macdonald D.W.,University of Oxford
Oikos | Year: 2015

Fear of predation can have major impacts on the behaviour of prey species. Recently the concept of the ecology of fear has been defined and formalised; yet there has been relatively little focus on how these ideas apply to large carnivore species which, although not prey sensu stricto, also experience fear as a result of threats from humans. Large carnivores are likely also subject to a Landscape of Fear similar to that described for prey species. We argue that although fear is generic, 'human-caused mortality' represents a distinct and very important cause of fear for large carnivores, particularly terrestrial large carnivores as their activities overlap with those of humans to a greater degree. We introduce the idea of a 'Landscape of Coexistence' for large carnivores to denote a subset of the Landscape of Fear where sufficient areas of low human-caused mortality risk are present in the landscape for long term coexistence of large carnivores and humans. We then explore aspects of terrestrial large carnivore behavioural ecology that may be best explained by risk of human-caused mortality, and how the nature of a Landscape of Coexistence for these large carnivores is likely to be shaped by specific factors such as habitat structure, wild and domestic prey base, and human distribution and behaviour. The human characteristics of this Landscape of Coexistence may be as important in determining large carnivore distribution and behavioural ecology as the distribution of resources. Understanding the Landscape of Coexistence for terrestrial large carnivores is therefore important for their biology and conservation throughout large parts of their remaining ranges. © 2015 The Authors.


Oriol-Cotterill A.,University of Oxford | Oriol-Cotterill A.,University of California at Berkeley | Valeix M.,University of Oxford | Valeix M.,University Claude Bernard Lyon 1 | And 3 more authors.
Oikos | Year: 2015

Fear of predation can have major impacts on the behaviour of prey species. Recently the concept of the ecology of fear has been defined and formalised; yet there has been relatively little focus on how these ideas apply to large carnivore species which, although not prey sensu stricto, also experience fear as a result of threats from humans. Large carnivores are likely also subject to a Landscape of Fear similar to that described for prey species. We argue that although fear is generic, 'human-caused mortality' represents a distinct and very important cause of fear for large carnivores, particularly terrestrial large carnivores as their activities overlap with those of humans to a greater degree. We introduce the idea of a 'Landscape of Coexistence' for large carnivores to denote a subset of the Landscape of Fear where sufficient areas of low human-caused mortality risk are present in the landscape for long term coexistence of large carnivores and humans. We then explore aspects of terrestrial large carnivore behavioural ecology that may be best explained by risk of human-caused mortality, and how the nature of a Landscape of Coexistence for these large carnivores is likely to be shaped by specific factors such as habitat structure, wild and domestic prey base, and human distribution and behaviour. The human characteristics of this Landscape of Coexistence may be as important in determining large carnivore distribution and behavioural ecology as the distribution of resources. Understanding the Landscape of Coexistence for terrestrial large carnivores is therefore important for their biology and conservation throughout large parts of their remaining ranges. Synthesis The Landscape of Fear concept describing the relationship between predator and prey also applies to the relationship between humans and top carnivores. We synthesise current research to introduce the Landscape of Coexistence concept, arguing that top predators respond to the risks of human-caused mortality through spatiotemporal partitioning of activities to reduce contact with people. The character of the Landscape of Coexistence may be more important than the distribution of resources in determining large carnivore distribution and behavioural ecology in human dominated landscapes. Understanding their behavioural responses to human threats is crucial to successful conservation of large carnivores. © 2015 Nordic Society Oikos.


PubMed | Teton Research Institute
Type: Journal Article | Journal: The Journal of animal ecology | Year: 2015

Herbivores frequently have to make trade-offs between two basic needs: the need to acquire forage and the need to avoid predation. One manifestation of this trade-off is the landscape of fear phenomenon - wherein herbivores avoid areas of high perceived predation risk even if forage is abundant or of high quality in those areas. Although this phenomenon is well established among invertebrates, its applicability to terrestrial large herbivores remains debated, in part because experimental evidence is scarce. This study was designed to (i) experimentally test the effects of tree density - a key landscape feature associated with predation risk for African ungulates - on herbivore habitat use and (ii) establish whether habitat use patterns could be explained by trade-offs between foraging opportunities and predation risk avoidance. In a Kenyan savanna system, replicate plots dominated by the tree Acacia drepanolobium were cleared, thinned or left intact. Ungulate responses were measured over four years, which included years of moderate rainfall as well as a severe drought. Under average rainfall conditions, most herbivores (primarily plains zebra, Grants gazelle and hartebeest) favoured sites with fewer trees and higher visibility - regardless of grass production - while elephants (too large to be vulnerable to predation) favoured sites with many trees. During the drought, however, herbivores favoured sites that had high grass biomass, but not high visibility. Thus, during the drought, herbivores sought areas where food was more abundant, despite probable higher risk of predation. These results illustrate that the landscape of fear, and the associated interactions between top-down and bottom-up effects, is not static, but rather shifts markedly under different conditions. Climate thus has the potential to alter the strength and spatial dynamics of behaviourally mediated cascades in large herbivore systems.

Loading Teton Research Institute collaborators
Loading Teton Research Institute collaborators