Tessera Technologies, Inc.

San Jose, CA, United States

Tessera Technologies, Inc.

San Jose, CA, United States
SEARCH FILTERS
Time filter
Source Type

Patent
Tessera Technologies, Inc. | Date: 2017-04-03

System and method for thermal management in a multi-chip packaged device. A microelectronic unit is disclosed, and includes a semiconductor element having a top surface and a bottom surface remote from the top surface. A semiconductor device including active elements is located adjacent to the top surface. Operation of the semiconductor device generates heat. Additionally, one or more first blind vias extend from the bottom surface and partially into a thickness of the semiconductor element. In that manner, the blind via does not contact or extend to the semiconductor device (defined as active regions of the semiconductor element, and moreover, is electrically isolated from the semiconductor device. A thermally conductive material fills the one or more first blind vias for heat dissipation. Specifically, heat generated by the semiconductor device thermally conducts from the semiconductor element, and is further distributed, transferred and/or dissipated through the one or more first blind vias to other connecting components.


Patent
Tessera Technologies, Inc. | Date: 2016-12-09

A microelectronic package has a microelectronic element overlying or mounted to a first surface of a substrate and substantially rigid conductive posts projecting above the first surface or projecting above a second surface of the substrate remote therefrom. Conductive elements exposed at a surface of the substrate opposite the surface above which the conductive posts project are electrically interconnected with the microelectronic element. An encapsulant overlies at least a portion of the microelectronic element and the surface of the substrate above which the conductive posts project, the encapsulant having a recess or a plurality of openings each permitting at least one electrical connection to be made to at least one conductive post. At least some conductive posts are electrically insulated from one another and adapted to simultaneously carry different electric potentials. In particular embodiments, the openings in the encapsulant at least partially expose conductive masses joined to posts, fully expose top surfaces of posts and partially expose edge surfaces of posts, or may only partially expose top surfaces of posts.


Patent
Tessera Technologies, Inc. | Date: 2016-09-12

A method is disclosed of fabricating a microelectronic package comprising a substrate overlying the front face of a microelectronic element. A plurality of metal bumps project from conductive elements of the substrate towards the microelectronic element, the metal bumps having first ends extending from the conductive elements, second ends remote from the conductive elements, and lateral surfaces extending between the first and second ends. The metal bumps can be wire bonds having first and second ends attached to a same conductive pad of the substrate. A conductive matrix material contacts at least portions of the lateral surfaces of respective ones of the metal bumps and joins the metal bumps with contacts of the microelectronic element.


Patent
Tessera Technologies, Inc. | Date: 2016-11-28

A microelectronic assembly includes a substrate, a first and second microelectronic elements, a lead finger, electrical connections extending between contacts of the second microelectronic element and the lead fingers, and an encapsulant overlying at least portions of the first and second microelectronic elements, lead finger and electrical connections. The substrate has contacts at a first surface and terminals at an opposed second surface that are electrically connected with the substrate contacts. The first microelectronic element has contacts exposed at its front face. The front face of the first microelectronic element is joined to the substrate contacts. The second microelectronic element overlies the first microelectronic element and has contacts at a front face facing away from the substrate. The lead frame has lead fingers, wherein the second surface of the substrate and the lead fingers define a common interface for electrical interconnection to a component external to the microelectronic assembly.


A semiconductor substrate comprises both vertical interconnects and vertical capacitors with a common dielectric layer. The substrate can be suitably combined with further devices to form an assembly. The substrate can be made in etching treatments including a first step on the one side, and then a second step on the other side of the substrate.


Patent
Tessera Technologies, Inc. | Date: 2016-12-27

In interconnect fabrication (e.g. a damascene process), a conductive layer is formed over a substrate with holes, and is polished to provide interconnect features in the holes. To prevent erosion/dishing of the conductive layer at the holes, the conductive layer is covered by a sacrificial layer (possibly conformal) before polishing; then both layers are polished. Initially, before polishing, the conductive layer and the sacrificial layer are recessed over the holes, but the sacrificial layer is polished at a lower rate to result in a protrusion of the conductive layer at a location of each hole. The polishing can continue to remove the protrusions and provide a planar surface.


Patent
Tessera Technologies, Inc. | Date: 2016-12-15

An electrical connection structure includes a variable-composition nickel alloy layer with a minor constituent selected from a group consisting of boron, carbon, and tungsten, wherein at least over a portion of a conductive substrate, the concentration of the minor constituent varies throughout the variable-composition nickel alloy layer in a direction from the bottom surface of the variable-composition nickel alloy layer to the top surface of the variable-composition nickel alloy layer.


Patent
Tessera Technologies, Inc. | Date: 2016-06-06

A method of fabricating a semiconductor assembly can include providing a semiconductor element having a front surface, a rear surface, and a plurality of conductive pads, forming at least one hole extending at least through a respective one of the conductive pads by processing applied to the respective conductive pad from above the front surface, forming an opening extending from the rear surface at least partially through a thickness of the semiconductor element, such that the at least one hole and the opening meet at a location between the front and rear surfaces, and forming at least one conductive element exposed at the rear surface for electrical connection to an external device, the at least one conductive element extending within the at least one hole and at least into the opening, the conductive element being electrically connected with the respective conductive pad.


An information delivery system, an information delivery method, an information processing apparatus, and an information processing method is used advantageously to deliver content stream data easily, reliably and inexpensively to the general users. A personal computer prepares a content file and an order form file using software provided by a center system, and transmits the prepared files to the center system over the Internet. Given the order form file from a customer device, the center system encodes a content file accordingly to generate content stream data and causes a moving picture delivery server to deliver the generated stream data to user terminals. This invention can be applied, among others, to systems for delivering content data over the Internet.


Patent
Tessera Technologies, Inc. | Date: 2016-05-09

Described herein are microelectronic packages and methods of making such packages. Consistent with an example embodiment, the package includes a microelectronic unit. Conductive traces are disposed on a surface of the microelectronic unit. The package also includes a substrate with first and second opposed surfaces. The first surface faces the surface of and is in contact with the microelectronic unit; the second surface has a plurality of terminals configured for electrical connection with a least one external component. The substrate has conductive interconnects that include masses of conductive material joined to the conductive traces and electrically connected with the terminals. Conductive material passes from the second surface to the first surface and contacts the conductive traces and the terminals.

Loading Tessera Technologies, Inc. collaborators
Loading Tessera Technologies, Inc. collaborators