Time filter

Source Type

Ormiston M.L.,Terrence Donnelly Cardiovascular Research Laboratories | Slaughter G.R.D.,Terrence Donnelly Cardiovascular Research Laboratories | Deng Y.,Terrence Donnelly Cardiovascular Research Laboratories | Stewart D.J.,Terrence Donnelly Cardiovascular Research Laboratories | And 3 more authors.
American Journal of Physiology - Lung Cellular and Molecular Physiology | Year: 2010

Hyaluronan (HA) degradation fragments have been linked to inflammation in a wide range of lung diseases. In idiopathic pulmonary arterial hypertension, HA accumulation has been associated with advanced disease. In this study, we investigated the potential role of HA degradation in the early stages of disease by examining HA distribution, molecular mass, synthesis, and enzymatic degradation at different stages of disease progression in a rat model of monocrotaline (MCT)-induced pulmonary hypertension (PH). At 28 days post-MCT, severe PH was associated with increased total lung HA (P = 0.04). In contrast, a significant decrease in total lung HA was observed on day 10, before the onset of PH (P = 0.02). Molecular mass analysis revealed a loss of high molecular mass (HMM) HA at 10 and 24 days post-MCT, followed by an increase in HMM HA at 28 days. Expression of HA synthase 2 (HAS2) was elevated in MCT-challenged animals at 24 and 28 days, consistent with increased synthesis of HMM HA. Analysis by Morgan Elson assay and zymography demonstrated increased hyaluronidase-1 activity in the lungs of MCT-challenged rats, indicating that the observed increases in HAS2 expression and HA synthesis were counterbalanced, in part, by enhanced degradation. The present data demonstrate that, in the MCT model, early-stage PH is associated with enhanced hyaluronidase-1 activity, while both degradation and synthesis are increased at later stages. Thus an early increase in the generation of proinflammatory HA fragments may play a role in the onset and progression of pulmonary arterial hypertension. Copyright © 2010 the American Physiological Society. Source

Ormiston M.L.,Terrence Donnelly Cardiovascular Research Laboratories | Deng Y.,Ottawa Hospital Research Institute | Rundle N.,Ottawa Hospital Research Institute | Bendjelloul F.,Ottawa Hospital Research Institute | And 4 more authors.
American Journal of Pathology | Year: 2013

The capacity of imatinib mesylate to reverse established pulmonary arterial hypertension (PAH) has been attributed to a reduction in pulmonary arterial muscularization via inhibition of platelet-derived growth factor receptor-β on vascular smooth muscle cells. However, there is also a significant immunomodulatory component to the action of imatinib that may account for its efficacy in PAH. We found that monocrotaline-induced pulmonary hypertension was associated with a significant decrease in pulmonary natural killer (NK) cells and T lymphocytes and the accumulation of macrophages in the lungs of F344 rats. The prevention of pulmonary hypertension by imatinib blocked these changes in pulmonary leukocyte content and induced elevations in pulmonary interferon-γ, tumor necrosis factor α, and IL-10, corresponding to the enhanced activity of splenic NK cells ex vivo. Treatment with anti-asialo GM1 antiserum (ASGM1), which ablated circulating NK cells and depleted T cells, eliminated the therapeutic benefit of imatinib. ASGM1-treated animals also exhibited significant pulmonary arteriolar muscularization in response to monocrotaline challenge compared with immunocompetent controls despite daily imatinib administration to both groups. In the athymic rat, imatinib decreased right ventricular hypertrophy and pulmonary arteriolar muscularization in monocrotaline-challenged animals versus saline-treated controls but did not prevent pulmonary macrophage accumulation or the development of pulmonary hypertension. These data demonstrate that the immunomodulatory effects of imatinib are critical to its therapeutic action in experimental PAH. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved. Source

Discover hidden collaborations