Bellevue, WA, United States
Bellevue, WA, United States

TerraPower is a nuclear reactor design spin-off company of Intellectual Ventures that is headquartered in Bellevue, Washington, in the United States. TerraPower is investigating a class of nuclear fast reactors called the traveling wave reactor . One of TerraPower's primary investors is Bill Gates. Gates' investment is reportedly in the tens of millions of dollars. Other key investors are Venture-capital firms Charles River Ventures and Khosla Ventures, who reportedly invested $35 million in 2010. TerraPower is led by chief executive officer, John Gilleland, a member of the American Nuclear Society. In December 2011 India's Reliance Industries bought a minority stake through one of its subsidiaries. Reliance Industries Chairman Mukesh Ambani will join the company's board. TerraPower also works with Los Alamos National Laboratory who hopes this partnership will help strengthen and expand their science and energy programs.Whereas standard light water reactors such as PWRs or BWRs running worldwide use enriched uranium as fuel and need fuel reloads every few years, TWRs, once started, use depleted uranium instead and are considered to be able to operate for between 40 to 60 years without fuel reloading. Wikipedia.


Time filter

Source Type

Patent
TerraPower | Date: 2016-09-30

A dynamic neutron reflector assembly for a breed-and-burn fast reactor incrementally adjusts neutron spectrum and reactivity in a reactor core. The composition of materials in the dynamic neutron reflector may be adjusted to change neutron reflectivity levels, or to introduce neutron moderating or absorption characteristics. The dynamic neutron reflector may contain a flowing reflecting liquid of adjustable volume and/or density. Submergible members may be selectively inserted into the flowing reflecting liquid to alter its volume and introduce other neutron modifying effects such as moderation or absorption. Selective insertion of the submergible members allows for concentration of the neutron modifying effects in a selected portion of the reactor core. The flowing reflecting liquid may also act as a secondary coolant circuit by exchanging heat with the molten fuel salt.


Patent
TerraPower | Date: 2016-08-24

A fuel element has a ratio of area of fissionable nuclear fuel in a cross-section of the tubular fuel element perpendicular to the longitudinal axis to total area of the interior volume in the cross-section of the tubular fuel element that varies with position along the longitudinal axis. The ratio can vary with position along the longitudinal axis between a minimum of 0.30 and a maximum of 1.0. Increasing the ratio above and below the peak burn-up location associated with conventional systems reduces the peak burn-up and flattens and shifts the burn-up distribution, which is preferably Gaussian. The longitudinal variation can be implemented in fuel assemblies using fuel bodies, such as pellets, rods or annuli, or fuel in the form of metal sponge and meaningfully increases efficiency of fuel utilization.


Patent
Washington State University and TerraPower | Date: 2015-11-18

With the rapid increase in the price of fossil fuels and growing concerns over climate change, the demand for renewable energy sources continues to increase. Densified biomass fuels are an alternative, renewable energy source that is becoming increasingly popular. A densified biomass with increased and controllable energy density is needed. Various embodiments of densified biomass and process to manufacture are taught herein.


Patent
TerraPower | Date: 2016-07-13

Illustrative embodiments provide for the operation and simulation of the operation of fission reactors, including the movement of materials within reactors. Illustrative embodiments and aspects include, without limitation, nuclear fission reactors and reactor modules, including modular nuclear fission reactors and reactor modules, nuclear fission deflagration wave reactors and reactor modules, modular nuclear fission deflagration wave reactors and modules, methods of operating nuclear reactors and modules including the aforementioned, methods of simulating operating nuclear reactors and modules including the aforementioned, and the like.


A traveling wave nuclear fission reactor, fuel assembly, and a method of controlling burnup therein. In a traveling wave nuclear fission reactor, a nuclear fission reactor fuel assembly comprises a plurality of nuclear fission fuel rods that are exposed to a deflagration wave burnfront that, in turn, travels through the fuel rods. The excess reactivity is controlled by a plurality of movable neutron absorber structures that are selectively inserted into and withdrawn from the fuel assembly in order to control the excess reactivity and thus the location, speed and shape of the burnfront. Controlling location, speed and shape of the burnfront manages neutron fluence seen by fuel assembly structural materials in order to reduce risk of temperature and irradiation damage to the structural materials.


Patent
TerraPower | Date: 2016-03-21

Disclosed embodiments include fuel assemblies, fuel element, cladding material, methods of making a fuel element, and methods of using same.


Patent
TerraPower | Date: 2015-12-01

Illustrative embodiments provide nuclear fission igniters for nuclear fission reactors and methods for their operation. Illustrative embodiments and aspects include, without limitation, a nuclear fission igniter configured to ignite a nuclear fission deflagration wave in nuclear fission fuel material, a nuclear fission deflagration wave reactor with a nuclear fission igniter, a method of igniting a nuclear fission deflagration wave, and the like.


Patent
TerraPower | Date: 2015-08-28

A fast neutron nuclear reactor contains a nuclear reactor core having an array of device locations. Some device locations in the nuclear reactor core contain fissile and fertile nuclear fuel assembly devices. One or more other device locations in the nuclear reactor core contain Doppler reactivity augmentation devices that amplify the negativity of the Doppler reactivity coefficient within the nuclear reactor core. In some implementations, a Doppler reactivity augmentation device can also reduce the coolant temperature coefficient within the nuclear reactor core. Accordingly, a Doppler reactivity augmentation device contributes to a more stable nuclear reactor core.


Patent
TerraPower | Date: 2015-01-26

A computerized system for modeling reactor fuel element and fuel design to determine the thermo-mechanical performance thereof includes a processor coupled to memory, the memory configuring the processor to execute a fuel element analysis and an output configured to communicate data that describes the thermo-mechanical performance of the fuel element and fuel design based on the fuel element performance analysis. The processor is configured to estimate the mechanical behavior of a fuel by creating separate variables for the open and closed porosity components, conducting a routine for the open and closed porosity components that processes the current state of the fuel and updates the current state and forces of each of the open and closed porosity components, and combining the updates for the current state and forces according to a weighting; and estimate the creep and swelling behavior of a cladding.


The gasification of a carbonaceous material includes receiving a volume of feedstock, supplying thermal energy to the volume of feedstock to convert at least a portion of the volume of feedstock to at least one pyrolysis reaction product via at least one pyrolysis reaction, super-heating the at least one pyrolysis reaction product, providing a volume of super-heated steam, mixing the volume of super-heated steam with the super-heated at least one pyrolysis reaction product and converting at least a portion of at least one reformed product to at least one synthesis gas product via at least one water-gas-shift reaction.

Loading TerraPower collaborators
Loading TerraPower collaborators