Entity

Time filter

Source Type

Sapporo, Japan

Tenshi College is a private university in Higashi-ku, Sapporo, Hokkaido, Japan. The predecessor of the school, a women's vocational school, was founded in 1947. It was chartered as a junior college in 1950. In 2000 it became coeducational, adopting the present name at the same time. This school has its roots in a hospital started by 7 nuns from Europe who built a hospital for the poor in Sapporo. Wikipedia.


Saito M.,Tenshi College
Obesity Research and Clinical Practice | Year: 2013

Brown adipose tissue (BAT) is the major site of sympathetically activated adaptive thermogenesis during cold exposure and after spontaneous hyperphagia, thereby controlling whole-body energy expenditure and body fat. Recent radionuclide studies have demonstrated the existence of metabolically active BAT in healthy adult humans. Human BAT is activated by acute cold exposure, being positively correlated to cold-induced increases in energy expenditure. The metabolic activity of BAT is lower in older and obese individuals. The inverse relationship between the BAT activity and body fatness suggests that BAT, because of its energy dissipating activity, is protective against body fat accumulation. In fact, either repeated cold exposure or daily ingestion of some food ingredients acting on transient receptor potential channels recruited BAT in association with increased energy expenditure and decreased body fat even in individuals with low BAT activities before the treatment. Thus, BAT is a promising therapeutic target for combating human obesity and related metabolic disorders. © 2013 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved. Source


Yoneshiro T.,Hokkaido University | Saito M.,Tenshi College
Current Opinion in Clinical Nutrition and Metabolic Care | Year: 2013

PURPOSE OF REVIEW: Cold exposure activates brown adipose tissue (BAT), the major site of sympathetically activated nonshivering thermognenesis, via transient receptor potential (TRP) channels. Capsaicin and its nonpungent analogue (capsinoids) are agonists for a vanilloid subtype one of TRP, and have the potential to increase whole-body energy expenditure and reduce body fat. This article reviews the regulatory roles of BAT for energy expenditure and body fat in humans, particularly focusing on food ingredients activating the TRP-BAT axis. RECENT FINDINGS: Acute cold exposure increased energy expenditure in humans with metabolically active BAT, but not those without it. Quite similar responses were found after a single oral ingestion of either capsinoids or an alcohol extract of Guinea pepper seeds, indicating that these food ingredients activate BAT and thereby increase energy expenditure. When individuals without active BAT were exposed to cold every day for 6 weeks, BAT was recruited in association with increased energy expenditure and decreased body fat. A 6-week daily ingestion of capsinoids mimicked the effects of repeated cold exposure. These findings indicate that human BAT can be reactivated/recruited, thereby increasing energy expenditure and decreasing body fat. SUMMARY: Human BAT recruited by prolonged ingestion of a vanilloid subtype one of TRP agonists increases energy expenditure and decreases body fat. In addition to capsinoids, there are numerous food ingredients acting as TRP agonists, which are expected to activate BAT and so be useful for the prevention of obesity in daily life. © 2013 Wolters Kluwer Health / Lippincott Williams & Wilkins. Source


Saito M.,Tenshi College
Diabetes and Metabolism Journal | Year: 2013

Brown adipose tissue (BAT) is recognized as the major site of sympathetically activated nonshivering thermogenesis during cold exposure and after spontaneous hyperphagia, thereby controling whole-body energy expenditure and body fat. In adult humans, BAT has long been believed to be absent or negligible, but recent studies using fluorodeoxyglucose-positron emission tomography, in combination with computed tomography, demonstrated the existence of metabolically active BAT in healthy adult humans. Human BAT is activated by acute cold exposure, being positively correlated to cold-induced increases in energy expenditure. The metabolic activity of BAT differs among individuals, being lower in older and obese individuals. Thus, BAT is recognized as a regulator of whole-body energy expenditure and body fat in humans as in small rodents, and a hopeful target combating obesity and related disorders. In fact, there are some food ingredients such as capsaicin and capsinoids, which have potential to activate and recruit BAT via activity on the specific receptor, transient receptor potential channels, thereby increasing energy expenditure and decreasing body fat modestly and consistently. © 2013 Korean Diabetes Association. Source


Saito M.,Tenshi College
Endocrine Journal | Year: 2014

Brown adipose tissue (BAT) is the site of sympathetically activated adaptive thermognenesis during cold exposure and after hyperphagia, thereby controlling whole-body energy expenditure (EE) and body fat. Radionuclide imaging studies have demonstrated that adult humans have metabolically active BAT composed of mainly beige/brite adipocytes, recently identified brown-like adipocytes. The inverse relationship between the BAT activity and body fatness suggests that BAT is, because of its energy dissipating activity, protective against body fat accumulation in humans as it is in small rodents. In fact, either repeated cold exposure or daily ingestion of some food ingredients acting on transient receptor potential channels recruits BAT in parallel with increased EE and decreased body fat. In addition to the sympathetic nervous system, several endocrine factors are also shown to recruit BAT. Thus, BAT is a promising therapeutic target for combating human obesity and related metabolic disorders. © The Japan Endocrine Society. Source


Kajimura S.,University of California at San Francisco | Saito M.,Tenshi College
Annual Review of Physiology | Year: 2014

Brown adipose tissue (BAT) is specialized to dissipate chemical energy in the form of heat as a defense against cold and excessive feeding. Interest in the field of BAT biology has exploded in the past few years because of the therapeutic potential of BAT to counteract obesity and obesity-related diseases, including insulin resistance. Much progress has been made, particularly in the areas of BAT physiology in adult humans, developmental lineages of brown adipose cell fate, and hormonal control of BAT thermogenesis. As we enter into a new era of brown fat biology, the next challenge will be to develop strategies for activating BAT thermogenesis in adult humans to increase whole-body energy expenditure. This article reviews the recent major advances in this field and discusses emerging questions. © Copyright ©2014 by Annual Reviews. All rights reserved. Source

Discover hidden collaborations