Time filter

Source Type

Audubon, PA, United States

Sangha N.,Tengion
Methods in Molecular Biology | Year: 2013

Presented below is a methodology for the isolation, expansion, and maintenance of urothelial cells derived from human bladder. Such bladder-derived urothelial cells, taken together with bladder or alternately sourced smooth muscle cells, may be complexed with an appropriately shaped biodegradable scaffold to create regenerative constructs capable of seeding formation of new bladder or bladder-like neo-organs upon implantation in human cystectomy patients. © 2013 Springer Science+Business Media New York. Source

Basu J.,Tengion | Ludlow J.W.,Zen-Bio, Inc.
Regenerative Medicine | Year: 2014

Potency is a critical quality attribute of biological products, defined by the US FDA as the specific ability or capacity of the product, as indicated by appropriate laboratory tests or by adequately controlled clinical data obtained through the administration of the product in the manner intended, to effect a given result. Ideally, a potency assay will leverage the product's mechanism of action. Alternatively, the assay may focus on a therapeutically relevant biological activity. The absence of rigorous mechanistic data for the majority of cell-based therapeutics currently in the process research pipeline has impeded efforts to design and validate indices of product potency. Development of a systematic battery of parallel functional assays that, taken together, can address all potential mechanisms of action believed to be relevant for the product platform is recommended. Such an approach is especially important during preclinical development. Here, we summarize the principal and unique challenges facing the development of functionally relevant and rigorous potency assays for cell-based therapeutics. We present perspectives regarding potency assay development for these products as illustrated by our experiences in process R&D of cryopreserved hepatocytes (Incara Pharmaceuticals) and selected renal cells (Tengion). © 2014 Future Medicine Ltd. Source

Tengion | Date: 2012-11-20

The present invention relates to the regeneration, reconstruction, repair, augmentation or replacement of organs or tissue structures using scaffolds and autologous cells that are not derived from such organs or tissues.

Tengion | Date: 2012-10-26

The invention is directed to isolated renal cells, including tubular and erythropoietin (EPO)-producing kidney cell populations, and methods of isolating and culturing the same, as well as methods of treating a subject in need with the cell populations.

Tengion | Date: 2012-11-05

The present invention concerns bioactive renal cell populations, in particular a B2 cell population comprising an enriched population of tubular cells and wherein the renal cell population is depleted of a B1 cell population, renal cell constructs, and methods of screening test agents using the bioactive renal cell populations.

Discover hidden collaborations