Time filter

Source Type

Temple, PA, United States

Temple University, commonly referred to as Temple, is a comprehensive public research university in Philadelphia, Pennsylvania, United States. The University was founded in 1884 by Russell Conwell. As of 2014, more than 37,000 undergraduate, graduate, and professional students are enrolled in over 400 academic degree programs offered at seven campuses and sites in Pennsylvania, and international campuses in Rome, Tokyo, Singapore and London. Temple is among the nation's largest providers of professional education , preparing the largest body of professional practitioners in Pennsylvania. Wikipedia.

Issa J.P.,Temple University
Blood | Year: 2013

The myelodysplastic syndrome (MDS) is a clonal disorder characterized by increased stem cell proliferation coupled with aberrant differentiation resulting in a high rate of apoptosis and eventual symptoms related to bone marrow failure. Cellular differentiation is an epigenetic process that requires specific and highly ordered DNA methylation and histone modification programs. Aberrant differentiation in MDS can often be traced to abnormal DNA methylation (both gains and losses of DNA methylation genome wide and at specific loci) as well as mutations in genes that regulate epigenetic programs (TET2 and DNMT3a, both involved in DNA methylation control; EZH2 and ASXL1, both involved in histone methylation control). The epigenetic nature of MDS may explain in part the serendipitous observation that it is the disease most responsive to DNA methylation inhibitors; other epigenetic-acting drugs are being explored in MDS as well. Progression in MDS is characterized by further acquisition of epigenetic defects as well as mutations in growth-controlling genes that seem to tip the proliferation/apoptosis balance and result in the development of acute myelogenous leukemia. Although MDS is clinically and physiologically heterogeneous, a case can be made that subsets of the disease can be largely explained by disordered stem cell epigenetics. Source

Spano F.C.,Temple University
Accounts of Chemical Research | Year: 2010

Electronic excitations in small aggregates, thin films, and crystals of conjugated organic molecules play a fundamental role in the operation of a wide array of organic-based devices including solar cells, transistors, and light-emitting diodes. Such excitations, or excitons, are generally spread out over several molecules: a balance between the delocalizing influence of resonant intermolecular coupling and the localizing influence of static and dynamic disorder determines the coherence range of the exciton. Because of the "soft" nature of organic materials, significant nuclear relaxation in the participating molecules also accompanies the electronic excitations. To properly understand energy or charge transport, one must treat intermolecular (excitonic) coupling, electron-vibrational coupling, and disorder on equal footing. In this Account, we review the key elements of a theoretical approach based on a multiparticle representation that describes electronic excitations in organic materials as vibronic excitations surrounded by a field of vibrational excitations. Such composite excitations are appropriately called Frenkel excitonic polarons. For many conjugated molecules, the bulk of the nuclear reorganization energy following electronic excitation arises from the elongation of a symmetric vinyl stretching mode with energy ∼1400 cm-1. To appreciate the impact of aggregation, we study how the vibronic progression of this mode, which dominates the isolated (solvated) molecule absorption and emission spectra, is distorted when molecules are close enough to interact with each other. As we demonstrate in this Account, the nature of the distortion provides a wealth of information about how the molecules are packed, the strength of the excitonic interactions between molecules, the number of molecules that are coherently coupled, and the nature of the disorder. We show that the aggregation-induced deviations from the Poissonian distribution of vibronic peak intensities take on two extremes identified with ideal H- and J-aggregates. The sign of the nearest neighbor electronic coupling, positive for H and negative for J, distinguishes the two basic aggregate forms. For several decades, researchers have known that H-aggregates exhibit blue-shifted absorption spectra and are subradiant while J-aggregates exhibit the opposite behavior (red-shifted absorption and superradiance). However, the exact inclusion of exciton-vibrational coupling reveals several more distinguishing traits between the two aggregate types: in H(J)-aggregates the ratio of the first two vibronic peak intensities in the absorption spectrum decreases (increases) with increasing excitonic coupling, while the ratio of the 0-0 to 0-1 emission intensities increases (decreases) with disorder and increases (decreases) with increasing temperature. These two extreme behaviors provide the framework for understanding absorption and emission in more complex morphologies, such as herringbone packing in oligo(phenylene vinylene)s, oligothiophenes and polyacene crystals, as well as the polymorphic packing arrangements observed in carotenoids. Figure Presented © 2010 American Chemical Society. Source

Crino P.B.,Temple University
Acta Neuropathologica | Year: 2013

Over the past decade, there have been numerous advances in our understanding of the molecular pathogenesis of tuberous sclerosis complex (TSC). Following the identification of the TSC1 and TSC2 genes, a link to regulatory control of the mammalian target of rapamycin (mTOR) signaling pathway has paved the way for new therapeutic interventions, and now even approved therapies for TSC. Gene identification has permitted establishment of cell lines and conditional knockout mouse strains to assay how abnormalities in brain structure lead to enhanced excitability, seizures, cognitive disabilities, and other neuropsychological disorders in TSC. Furthermore, work in in vitro systems and analysis of rodent models and human tissue has allowed investigators to study how brain lesions form in TSC. Evolving questions over the next decade include understanding the high clinical variability of TSC, defining why there is a lack of clear genotype-phenotype correlations, and identifying biomarkers for prognosis and stratification. The study of TSC has in many ways reflected a paradigm "bench-to-bedside" success story that serves as a model of many other neurological disorders. © 2013 Springer-Verlag Berlin Heidelberg. Source

An embodiment of the invention relates to the use of stabilized cancer peptide fragments derived from redoxin proteins selected from the group consisting of thioredoxin; peroxiredoxin-1, 2 and 3; glutaredoxin-3; glutathione peroxidase-4; and nucleoredoxins for the diagnosis of cancers, particularly pancreatic cancer. A method for the detection of cancer, severity of cancer, and/or effectiveness of a therapeutic regimen comprises detecting and/or measuring the amount of redoxin peptide fragments present in the biological sample of a subject.

Temple University, Duke University and Research Triangle Institute | Date: 2015-05-13

Compounds are provided having agonistic activity against G protein-coupled receptor 35 (GPR35). The compounds are useful for providing antinociception, providing neuroprotection in case of stroke or ischemia, or treating gastric inflammation.

Discover hidden collaborations