INAF Telescopio Nazionale Galileo

Breña Baja, Spain

INAF Telescopio Nazionale Galileo

Breña Baja, Spain
SEARCH FILTERS
Time filter
Source Type

Zamkotsian F.,French National Center for Scientific Research | Spano P.,National institute for astrophysics | Lanzoni P.,French National Center for Scientific Research | Bon W.,French National Center for Scientific Research | And 6 more authors.
Proceedings of SPIE - The International Society for Optical Engineering | Year: 2013

Next-generation infrared astronomical instrumentation for ground-based and space telescopes could be based on MOEMS programmable slit masks for multi-object spectroscopy (MOS). This astronomical technique is used extensively to investigate the formation and evolution of galaxies. We propose to develop a 2048x1080 DMD-based MOS instrument to be mounted on the Galileo telescope and called BATMAN. A two-arm instrument has been designed for providing in parallel imaging and spectroscopic capabilities. The two arms with F/4 on the DMD are mounted on a common bench, and an upper bench supports the detectors thanks to two independent hexapods. Very good optical quality on the DMD and the detectors will be reached. ROBIN, a BATMAN demonstrator, has been designed, realized and integrated. It permits to determine the instrument integration procedure, including optics and mechanics integration, alignment procedure and optical quality. First images have been obtained and measured. A DMD pattern manager has been developed in order to generate any slit mask according to the list of objects to be observed; spectra have been generated and measured. Observation strategies will be studied and demonstrated for the scientific optimization strategy over the whole FOV. BATMAN on the sky is of prime importance for characterizing the actual performance of this new family of MOS instruments, as well as investigating the operational procedures on astronomical objects. This instrument will be placed on the Telescopio Nazionale Galileo at the beginning of next year, in 2014. © 2013 SPIE.


Zamkotsian F.,French National Center for Scientific Research | Spano P.,National institute for astrophysics | Lanzoni P.,French National Center for Scientific Research | Ramarijaona H.,French National Center for Scientific Research | And 13 more authors.
Proceedings of SPIE - The International Society for Optical Engineering | Year: 2014

Next-generation infrared astronomical instrumentation for ground-based and space telescopes could be based on MOEMS programmable slit masks for multi-object spectroscopy (MOS). This astronomical technique is used extensively to investigate the formation and evolution of galaxies. We are developing a 2048x1080 Digital-Micromirror-Device-based (DMD) MOS instrument to be mounted on the Galileo telescope and called BATMAN. A two-arm instrument has been designed for providing in parallel imaging and spectroscopic capabilities. The field of view (FOV) is 6.8 arcmin x 3.6 arcmin with a plate scale of 0.2 arcsec per micromirror. The wavelength range is in the visible and the spectral resolution is R=560 for 1 arcsec object (typical slit size). The two arms will have 2k x 4k CCD detectors. ROBIN, a BATMAN demonstrator, has been designed, realized and integrated. It permits to determine the instrument integration procedure, including optics and mechanics integration, alignment procedure and optical quality. First images and spectra have been obtained and measured: typical spot diameters are within 1.5 detector pixels, and spectra generated by one micro-mirror slits are displayed with this optical quality over the whole visible wavelength range. Observation strategies are studied and demonstrated for the scientific optimization strategy over the whole FOV. BATMAN on the sky is of prime importance for characterizing the actual performance of this new family of MOS instruments, as well as investigating the operational procedures on astronomical objects. This instrument will be placed on the Telescopio Nazionale Galileo mid-2015. © 2014 SPIE.


Zamkotsian F.,French National Center for Scientific Research | Spano P.,National institute for astrophysics | Bon W.,French National Center for Scientific Research | Riva M.,National institute for astrophysics | And 13 more authors.
Proceedings of SPIE - The International Society for Optical Engineering | Year: 2012

Multi-Object Spectrographs (MOS) are the major instruments for studying primary galaxies and remote and faint objects. Current object selection systems are limited and/or difficult to implement in next generation MOS for space and ground-based telescopes. A promising solution is the use of MOEMS devices such as micromirror arrays which allow the remote control of the multi-slit configuration in real time. We are developing a Digital Micromirror Device (DMD) - based spectrograph demonstrator called BATMAN. We want to access the largest FOV with the highest contrast. The selected component is a DMD chip from Texas Instruments in 2048 x 1080 mirrors format, with a pitch of 13.68?m. Our optical design is an all-reflective spectrograph design with F/4 on the DMD component. This demonstrator permits the study of key parameters such as throughput, contrast and ability to remove unwanted sources in the FOV (background, spoiler sources), PSF effect, new observational modes. This study will be conducted in the visible with possible extension in the IR. A breadboard on an optical bench, ROBIN, has been developed for a preliminary determination of these parameters. The demonstrator on the sky is then of prime importance for characterizing the actual performance of this new family of instruments, as well as investigating the operational procedures on astronomical objects. BATMAN will be placed on the Nasmyth focus of Telescopio Nazionale Galileo (TNG) during next year. © 2012 SPIE.

Loading INAF Telescopio Nazionale Galileo collaborators
Loading INAF Telescopio Nazionale Galileo collaborators