Madrid, Spain
Madrid, Spain

Telefónica, S.A. is a Spanish broadband and telecommunications provider with operations in Europe, Asia, North America and South America. Operating globally, it is one of the largest mobile network providers in the world. The company started as a public telecommunications company. Its head office is in the Distrito Telefónica in Madrid. As well as the Telefónica brand, it also trades as O2 and Movistar.Telefónica is a supporter of the Hybrid Broadcast Broadband TV initiative that is promoting and establishing an open European standard for hybrid set-top boxes for the reception of broadcast TV and broadband multimedia applications with a single user interface, and has run pilot HbbTV services in Spain. Wikipedia.


Time filter

Source Type

A computer-implemented method, a system and computer programs products for assessing the credit worthiness of a user, the method comprising: collecting, by a data collector, information about communications conducted by users of a communication network, the collected information at least comprising Call Detail Records including calls; analyzing, by a computing system, during a specific time frame, the collected information regarding a particular user including communications started by the particular user and/or communications received by the user, and determining, data variables from the analyzed information, the data variables including at least communication patterns; and computing, by the computing system, both a default risk score and a fraud risk score of the user by using the determined data variables.


A system, method and device for error detection/estimation in OFDM communications systems is proposed. The disclosed mechanism allows an efficient error prediction in a received data block (e.g. a packet) without using error detection codes that may impair spectral efficiency (due to the overhead) especially when very small size packets are used. In order to do that, it generates a decision variable with the aim to check whether a received block has errors or not, without resorting to the use of error-detection codes.


A system, method and device for error detection/estimation in OFDM communications systems is proposed. The disclosed mechanism allows an efficient error prediction in a received packet, without having to perform full FEC decoding of the packet that could impair the overall latency of the system due to the time spent in a complete FEC decoding of the packet. In order to do that, it generates a decision variable with the aim to check whether a received packet has errors or not, after performing only partial FEC decoding of the packet, without either resorting to the use of error-detection codes.


A system, method and device for error detection/estimation in OFDM communications systems is proposed. The disclosed mechanism allows an efficient error prediction in a received packet, without having to perform full FEC decoding of the packet that could impair the overall latency of the system due to the time spent in a complete FEC decoding of the packet. In order to do that, it generates a decision variable with the aim to check whether a received packet has errors or not, after performing only partial FEC decoding of the packet, without either resorting to the use of error-detection codes.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: ICT-13-2016 | Award Amount: 5.38M | Year: 2017

Key industrial sectors e.g. automotive, are rapidly transformed by digital and communication technologies leading to the fourth industrial revolution. New ones are in the making, e.g. Smart Cities, which inspire a new breed of applications and services. The salient characteristic of these sectors, known as verticals, is that they are rapidly becoming open ecosystems built on top of common physical infrastructures and resources. This requires a high degree of technological convergence among vertical industries empowering them with enhanced technical capacity to trigger the development of new, innovative products, applications and services. 5G network infrastructures and embodied technologies are destined to become a stakeholder driven, holistic environment for technical and business innovation integrating networking, computing and storage resources into one programmable and unified infrastructure. It is this 5G vision that when it is further projected to accommodate verticals raises a number of technical issues Motivated by them, 5GinFIRE project aspires to address two interlinked questions: - Q1: How such a holistic and unified environment should look like? - Q2: How can 5GinFIRE host and integrate verticals and concurrently deal with reconciling their competing and opposing requirements? Addressing these key questions, 5GinFIRE main technical objective is to build and operate an Open, and Extensible 5G NFV-based Reference (Open5G-NFV) ecosystem of Experimental Facilities that integrates existing FIRE facilities with new vertical-specific ones and enables experimentation of vertical industries. In order to guarantee architectural and technological convergence the proposed environment will be built in alignment with on-going standardization and open source activities. Accordingly, the Open5G-NFV FIRE ecosystem may serve as the forerunner experimental playground wherein innovations may be proposed before they are ported to emerging mainstream 5G networks.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: IoT-01-2016 | Award Amount: 20.05M | Year: 2017

SynchroniCity represents the first attempt to deliver a Single Digital City Market for Europe by piloting its foundations at scale in 11 reference zones - 8 European cities & 3 more worldwide cities - connecting 34 partners from 11 countries over 4 continents. Building upon a mature European knowledge base derived from initiatives such as OASC, FIWARE, FIRE, EIP-SCC, and including partners with leading roles in standardization bodies, e.g. ITU, ETSI, IEEE, OMA, IETF, SynchroniCity will deliver a harmonized ecosystem for IoT-enabled smart city solutions where IoT device manufacturers, system integrators and solution providers can innovate and openly compete. With an already emerging foundation, SynchroniCity will establish a reference architecture for the envisioned IoT-enabled city market place with identified interoperability points and interfaces and data models for different verticals. This will include tools for co-creation & integration of legacy platforms & IoT devices for urban services and enablers for data discovery, access and licensing lowering the barriers for participation on the market. SynchroniCity will pilot these foundations in the reference zones together with a set of citizen-centred services in three high-impact areas, showing the value to cities, businesses and citizens involved, linked directly to the global market. With a running start, SynchroniCity will serve as lighthouse initiative to inspire others to join the established ecosystem and contribute to the emerging market place. SynchroniCity takes an inclusive approach to grow the ecosystem by inviting businesses and cities to join through an open call, allowing them to participate on the pioneering market place enabling a second wave of successful pilots. They will strengthen the ecosystem by creating a positive ripple effect throughout Europe, and globally, to establish a momentum and critical mass for a strong European presence in a global digital single market of IoT-enabled solutions.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: IoT-01-2016 | Award Amount: 34.71M | Year: 2017

The IoF2020 project is dedicated to accelerate adoption of IoT for securing sufficient, safe and healthy food and to strengthen competitiveness of farming and food chains in Europe. It will consolidate Europes leading position in the global IoT industry by fostering a symbiotic ecosystem of farmers, food industry, technology providers and research institutes. The IoF2020 consortium of 73 partners, led by Wageningen UR and other core partners of previous key projects such as FIWARE and IoT-A, will leverage the ecosystem and architecture that was established in those projects. The heart of the project is formed by 19 use cases grouped in 5 trials with end users from the Arable, Dairy, Fruits, Vegetables and Meat verticals and IoT integrators that will demonstrate the business case of innovative IoT solutions for a large number of application areas. A lean multi-actor approach focusing on user acceptability, stakeholder engagement and sustainable business models will boost technology and market readiness levels and bring end user adoption to the next stage. This development will be enhanced by an open IoT architecture and infrastructure of reusable components based on existing standards and a security and privacy framework. Anticipating vast technological developments and emerging challenges for farming and food, the 4-year project stays agile through dynamic budgeting and adaptive decision-making by an implementation board of representatives from key user organizations. A 6 M mid-term open call will allow for testing intermediate results and extending the project with technical solutions and test sites. A coherent dissemination strategy for use case products and project learnings supported by leading user organizations will ensure a high market visibility and an increased learning curve. Thus IoF2020 will pave the way for data-driven farming, autonomous operations, virtual food chains and personalized nutrition for European citizens.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: WASTE-6a-2015 | Award Amount: 10.56M | Year: 2016

The main objective of this project is to move forward the current waste management practices into a circular economy motto, demonstrating the value of integrating and validating a set of 20 eco-innovative solutions that cover all the waste value chain. The benefits of these solutions will be enhanced by a holistic waste data management methodology, and will be demonstrated in 4 complementary urban areas in Europe. The eco-innovative solutions include technological and non-technological tools such as: a) IT tools to support the daily operation and long-term planning, b) Apps for citizens empowerment and engagement, c) Educational materials based on innovative teaching units and serious games, d) Tools for citizen science for the co-creation of novel solutions, e) Mechanisms to boost behavioral changes based on economic instruments and social actions, and f) Decentralized solutions for valorization and reuse of high value resources. The different solutions will be implemented in 4 complementary European areas: a) Zamudio (ES) is a highly industrialized area with a spread population that uses a separated kerbside collection; b) Halandri (GR) is a large suburban city with a wide range of business that has a very basic waste management system; c) Seveso (IT) is a residential town that uses a door-to-door system; d) and Cascais (PT) is an extensive and high touristic coastal town that implements an advanced collection system. The project includes a consortium of 19 partners with 4 public agencies and administrations, 3 research centers and universities, 8 SMEs, 2 LEs, 1 cluster and 1 NGO, that will work together during 36 months with an overall contribution from the EC of 9M.The most relevant expected impacts are: a 20% increase in waste sorting, 10% saving of management costs, and 10% reduction of GHG emissions. The experience gained, and the synergies among the partners describe the best possible scenario to launch new governance and business models.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: ICT-04-2015 | Award Amount: 6.45M | Year: 2016

For all the superior features that low-power computing systems exhibit compared to conventional high-end server designs, there is a common design axiom that both technological trends are based on: the main-board and its hardware components form the baseline, monolithic building block that the rest of the hw/sw stack design builds upon. This proportionality of compute/memory/network/storage resources is fixed during design time and remains static throughout machine lifetime, with known ramifications in terms of low system resource utilization, costly upgrade cycles and degraded energy proportionality. dReDBox takes on the challenge of revolutionizing the low-power computing market by breaking once and for all server boundaries through materialization of the concept of disaggregation. Through a highly modular software-defined architecture for the next generation datacentre, dRedBox will specify/design/prototype modular blocks for SoC-based microservers, memory and accelerators, interconnected via a high-speed, low-latency opto-electronic system fabric, and that can be allocated in arbitrary sets, as driven by fit-for-purpose resource/power management software. These blocks will employ state-of-the-art low-power components and be amenable to be deployed in various integration form factors and target scenarios. dRedBox aims to deliver a full-fledged, vertically integrated datacentre-in-a-box prototype to showcase the superiority of disaggregation in terms of scalability, efficiency, reliability,performance and energy reduction. The prototype will be used as vehicle to demonstrate the value of dReDBox in 3 pilot use-cases stemming from three market segments: Security, Network Analytics and Telecom. With an industry-lead consortium comprising top academic experts too, dReDBox is in the best position to generate significant impact with its game-changing approach and contribute to Europe maintaining its leading innovation and market position in low-power advanced computing.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: ICT-12-2016 | Award Amount: 10.01M | Year: 2016

Digital technologies underpin innovation and competitiveness across a broad range of market sectors. A key technology to boost such innovation and competitiveness is represented by the full and wide adoption of Open Service Platforms. In fact, they will allow increased competition and market penetration because they should be built on top of royalty-free open specifications, adopting open source reference implementations, and s such allowed to be offered by multiple vendors. The Seventh Framework Programme for Research and Technology Development (FP7) has developed the FIWARE platform which has demonstrated its potential of becoming a service platform of choice, with proven potential for usage by SMEs and startups. This rises to the extent that four main ICT players in Europe with global ambition have put FIWARE in their strategy for market development. More than that, those four players announced the creation of an open to all legal entity, the FIWARE Foundation, to have more stakeholders driving the evolution of FIWARE. Well in this scope, the aim of the FI-NEXT project is to put in place all the measures necessary in order to make FIWARE materializing such a potential. This will achieved pursuing the following objectives: a) bringing FIWARE from an European Open Source project to a global Open Source Community, b) ensuring FIWARE meets the highest quality standards and best technical support, c) positioning FIWARE as the de facto standard for the development of smart applications, and d) ensuring FIWARE Lab to be a self-sustainable environment.

Loading Telefonica collaborators
Loading Telefonica collaborators