Time filter

Source Type

Haifa, Israel

The Technion – Israel Institute of Technology is a public research university in Haifa, Israel. Established in 1912, the Technion is the oldest university in Israel. The university offers degrees in science and engineering, and related fields such as architecture, medicine, industrial management and education. It has 18 academicfaculties and departments and 52 research centers. Since its founding, it has awarded more than 100,000 degrees and its graduates are cited for providing the skills and education behind the creation and protection of the State of Israel.The university's principal language of instruction is Hebrew. Choosing the language of instruction was the subject of a national debate that became an important milestone in the consolidation of Hebrew as the spoken language in the State of Israel.Technion's 622 faculty members currently include three Nobel Laureates in chemistry. Four Nobel Laureates have been associated with the university.The current president of the Technion is Prof. Peretz Lavie, who was ranked in 2012 by the Israeli national newspaper The Marker as one of the country's 100 most influential people.The Technion is placed in the Silicon Wadi and cited as one of the factors behind the growth of Israel's high-tech industry. Wikipedia.

Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), is linked with increased reactive oxygen species/reactive nitrogen species (ROS/RNS) and oxidative stress, which adversely affect the associated cardio-/cerebro-vascular disease in OSA. Yet, animal and a small number of human studies support activation of cardio-/cerebro-protective mechanisms as well. ROS/RNS are intricate and multifaceted molecules with multiple functions. At low-moderate concentrations ROS/RNS are considered "good", by regulating vital cellular functions. At higher levels, they are considered "bad" by promoting oxidative stress and damaging vital macromolecules through ischemia and reperfusion (I/R) injury. Subsequently, ROS/RNS can get "ugly" by eliciting sterile inflammation and a multitude of deadly pathologies. What makes ROS/RNS good, bad, or ugly? A dynamic interplay between a large number of factors determines the outcomes. These include the types of ROS/RNS produced, their quantity, duration, frequency, intracellular localization, micro-environmental antioxidants, as well as the genetic make-up and life style related variables. This review presents the currently available data on redox biology in physiological/pathophysiological conditions and in OSA/IH, in order to better understand the apparently contradictory findings on damage vs. repair. These findings are discussed within the context of the prevailing views on I/R associated ROS/RNS, and their potential implications to OSA. © 2014 Elsevier Ltd.

Steinhauer J.,Technion - Israel Institute of Technology
Nature Physics | Year: 2014

By a combination of quantum field theory and general relativity, black holes have been predicted to emit Hawking radiation. Observation from an actual black hole is, however, probably extremely difficult, so attention has turned to analogue systems in the search for such radiation. Here, we create a narrow, low density, very low temperature atomic Bose-Einstein condensate, containing an analogue black-hole horizon and an inner horizon, as in a charged black hole. We report the observation of Hawking radiation emitted by this black-hole analogue, which is the output of the black-hole laser formed between the horizons. We also observe the exponential growth of a standing wave between the horizons, which results from interference between the negative-energy partners of the Hawking radiation and the negative-energy particles reflected from the inner horizon. We thus observe self-amplifying Hawking radiation. © 2014 Macmillan Publishers Limited.

Levenberg S.,Technion - Israel Institute of Technology
Nature protocols | Year: 2010

Herein, we describe a protocol for the isolation of human embryonic stem cells (hESCs)-derived vascular cells at various stages of development. The cells are isolated from 10 to 15-d-old human embryoid bodies (EBs) cultured in suspension. After dissociation, cells are labeled with anti-CD34 or anti-CD31 (PECAM1) antibody and separated from the cell mixture by magnetic-activated cell separation (MACS) or fluorescent-activated cell sorting (FACS). Isolated vascular cells are then cultured in media conditions that support specific differentiation and expansion pathways. The resulting vascular cell populations contain >80% endothelial-like or smooth muscle-like cells. Assuming typical initial cell adhesion and proliferation rates, the entire procedure can be completed within 1.5 months. Vascular cells isolated and differentiated under the described conditions may constitute a potential cell source for therapeutic application toward repair of ischemic tissues, preparation of tissue-engineered vascular grafts and design of cellular kits for drug screening applications.

Ciechanover A.,Technion - Israel Institute of Technology
Nature Reviews Molecular Cell Biology | Year: 2015

Today, many scientific discoveries are made using a top-down experimental approach. The ubiquitin system was discovered using a 'classic' bottom-up approach to tackle the question: 'how are cellular proteins selectively degraded?' A simple proteolytic assay, which used a crude cell-extract, was all that was required to address this question; it was followed by fractionation and reconstitution experiments to decipher the role of the components in this multi-step process. This 'biochemistry at its best' approach, which was published in a periodical that today would not be regarded as highly visible, provided magnificent findings. © 2015 Macmillan Publishers Limited. All rights reserved.

Livney Y.D.,Technion - Israel Institute of Technology
Current Opinion in Colloid and Interface Science | Year: 2010

Milk proteins are natural vehicles for bioactives. Many of their structural and physicochemical properties facilitate their functionality in delivery systems. These properties include binding of ions and small molecules, excellent surface and self-assembly properties; superb gelation properties; pH-responsive gel swelling behavior, useful for programmable release; interactions with other macromolecules to form complexes and conjugates with synergistic combinations of properties; various shielding capabilities, essential for protecting sensitive payload; biocompatibility and biodegradability, enabling to control the bioaccessibility of the bioactive, and promote its bioavailability. The review highlights the main achievements reported in the last 3 years: harnessing the casein micelle, a natural nanovehicle of nutrients, for delivering hydrophobic bioactives; discovering unique nanotubes based on enzymatic hydrolysis of α-la; introduction of novel encapsulation techniques based on cold-set gelation for delivering heat-sensitive bioactives including probiotics; developments and use of Maillard reaction based conjugates of milk proteins and polysaccharides for encapsulating bioactives; introduction of β-lg-pectin nanocomplexes for delivery of hydrophobic nutraceuticals in clear acid beverages; development of core-shell nanoparticles made of heat-aggregated β-lg, nanocoated by beet-pectin, for bioactive delivery; synergizing the surface properties of whey proteins with stabilization properties of polysaccharides in advanced W/O/W and O/W/O double emulsions; application of milk proteins for drug targeting, including lactoferrin or bovine serum albumin conjugated nanoparticles for effective in vivo drug delivery across the blood-brain barrier; beta casein nanoparticles for targeting gastric cancer; fatty acid-coated bovine serum albumin nanoparticles for intestinal delivery, and Maillard conjugates of casein and resistant starch for colon targeting. Major future challenges are spot-lighted. © 2009 Elsevier Ltd. All rights reserved.

Discover hidden collaborations