Technion - Israel Institute of Technology
Haifa, Israel

The Technion – Israel Institute of Technology is a public research university in Haifa, Israel. Established in 1912, the Technion is the oldest university in Israel. The university offers degrees in science and engineering, and related fields such as architecture, medicine, industrial management and education. It has 18 academicfaculties and departments and 52 research centers. Since its founding, it has awarded more than 100,000 degrees and its graduates are cited for providing the skills and education behind the creation and protection of the State of Israel.The university's principal language of instruction is Hebrew. Choosing the language of instruction was the subject of a national debate that became an important milestone in the consolidation of Hebrew as the spoken language in the State of Israel.Technion's 622 faculty members currently include three Nobel Laureates in chemistry. Four Nobel Laureates have been associated with the university.The current president of the Technion is Prof. Peretz Lavie, who was ranked in 2012 by the Israeli national newspaper The Marker as one of the country's 100 most influential people.The Technion is placed in the Silicon Wadi and cited as one of the factors behind the growth of Israel's high-tech industry. Wikipedia.

Time filter
Source Type

Steinhauer J.,Technion - Israel Institute of Technology
Nature Physics | Year: 2016

We observe spontaneous Hawking radiation, stimulated by quantum vacuum fluctuations, emanating from an analogue black hole in an atomic Bose-Einstein condensate. Correlations are observed between the Hawking particles outside the black hole and the partner particles inside. These correlations indicate an approximately thermal distribution of Hawking radiation. We find that the high-energy pairs are entangled, while the low-energy pairs are not, within the reasonable assumption that excitations with different frequencies are not correlated. The entanglement verifies the quantum nature of the Hawking radiation. The results are consistent with a driven oscillation experiment and a numerical simulation. © 2016 Macmillan Publishers Limited, part of Springer Natural. All rights reserved.

Marom S.,Technion - Israel Institute of Technology
Progress in Neurobiology | Year: 2010

This article aims at making readers, experimentalists and theorists, more aware of the abstractions made by an observer when measuring and reporting behavioral and neural timescales. These abstractions stow away the fact that, above lower boundaries that reflect fairly well understood physical constraints, observed and reported timescales are often not intrinsic to the biological system; rather, in most cases they reflect conditions that are imposed by the observer through the measuring procedure. This is true at practically every level of organization, from behavior down to molecules. I analyze the impacts of the resulting temporal manifold in behavioral and brain sciences on experimental designs and mathematical modeling. © 2009 Elsevier Ltd. All rights reserved.

NanoPack will demonstrate a solution for extending food shelf life by using novel smart antimicrobial surfaces, applied in active food packaging products. It will run pilot lines in operational industrial environments to manufacture commercially feasible antimicrobial polymer films, accepted by consumers. It will minimize the amount of preservatives required to maintain freshness, add value and assure safety to the entire supply chain. The project will employ natural Halloysite Nanotubes (HNTs) as reliable and safe carriers of bio-active compounds which are unable to migrate from the food packaging into food. Maximising safety, they slowly release minute amounts of potent, volatile and broad-spectrum natural agents into the packaging headspace. Using nanotechnology enables 1) introducing sensitive molecules into polymer films; 2) anti-microbial functionality without impaired film properties; 3) manufacturing potent antimicrobial surfaces with tunable properties, while creating a pH-triggered gate keeper effect to slow down release of the payload encapsulated. The resulting film will exhibit antimicrobial properties unmet by the current state-of-the-art. The processes across the supply chain will be validated through 5 pilot runs on existing production lines: 1) loading antimicrobials, 2) anti-microbial HNT polymer production, 3) anti-microbial packaging film production and 4-5) using the novel packaging on food products. Commercial feasibility will be assessed, including consumer acceptance and legal, regulatory, safety and environmental aspects. The success of NanoPack will result in validated consumer-accepted nanotechnology-based antimicrobial food packaging that will enhance food safety, prevent foodborne illness outbreaks and reduce food waste caused by early spoilage. Better performing, safer and smarter products will position Europe as the leader in food nanotechnology & smart antimicrobial packaging while increasing competitiveness and industry growth.

Agency: European Commission | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

This project is the second in the series of EC-financed parts of the Graphene Flagship. The Graphene Flagship is a 10 year research and innovation endeavour with a total project cost of 1,000,000,000 euros, funded jointly by the European Commission and member states and associated countries. The first part of the Flagship was a 30-month Collaborative Project, Coordination and Support Action (CP-CSA) under the 7th framework program (2013-2016), while this and the following parts are implemented as Core Projects under the Horizon 2020 framework. The mission of the Graphene Flagship is to take graphene and related layered materials from a state of raw potential to a point where they can revolutionise multiple industries. This will bring a new dimension to future technology a faster, thinner, stronger, flexible, and broadband revolution. Our program will put Europe firmly at the heart of the process, with a manifold return on the EU investment, both in terms of technological innovation and economic growth. To realise this vision, we have brought together a larger European consortium with about 150 partners in 23 countries. The partners represent academia, research institutes and industries, which work closely together in 15 technical work packages and five supporting work packages covering the entire value chain from materials to components and systems. As time progresses, the centre of gravity of the Flagship moves towards applications, which is reflected in the increasing importance of the higher - system - levels of the value chain. In this first core project the main focus is on components and initial system level tasks. The first core project is divided into 4 divisions, which in turn comprise 3 to 5 work packages on related topics. A fifth, external division acts as a link to the parts of the Flagship that are funded by the member states and associated countries, or by other funding sources. This creates a collaborative framework for the entire Flagship.

Agency: European Commission | Branch: H2020 | Program: RIA | Phase: NMBP-03-2016 | Award Amount: 4.48M | Year: 2017

CREATE aims at developing innovative membrane electrode assemblies for low-temperature polymer-electrolyte fuel cell (FC) and electrolyzer (EL) with much reduced cost. This will be achieved via elimination or drastic reduction of critical raw materials in their catalysts, in particular platinum group metals (PGM). Key issues with present low-temperature FC & EL are the high contents of PGM in devices based on proton-exchange-membrane (PEM) and the need for liquid electrolytes in alkaline FC and EL. To overcome this, we will shift from PEM-based cells to 1) pure anion-conducting polymer-electrolytes and 2) to bipolar-membrane polymer electrolytes. The latter comprises anion and proton conducting ionomers and a junction. Bipolar membranes allow adapting the pH at each electrode, thereby opening the door to improved performance or PGM-free catalysts. Both strategies carry the potentiality to eliminate or drastically reduce the need for PGM while maintaining the advantages of PEM-based devices. In strategy 1, novel anion-exchange ionomers and membranes will be developed and interfaced with catalysts based on Earth-abundant metal oxides or metal-carbon composites for the oxygen reactions, and with ultralow PGM or PGM-free catalysts for the hydrogen reactions. In strategy 2, novel bipolar membrane designs, or designs unexplored for FC & EL, will be developed and interfaced with catalysts for the oxygen reactions (high pH side of the bipolar membrane) and with catalysts for the hydrogen reactions (low pH side). The ionomers and oxygen reaction catalysts developed in strategy 1 will be equally useful for strategy 2, while identified PGM-free and ultralow-PGM catalysts will be implemented for the hydrogen reactions on the acidic side. Polymer-electrolyte FC & EL based on those concepts will be evaluated for targeted applications, i.e. photovoltaic electricity storage, off-grid back-up power and H2 production. The targeted market is distributed small-scale systems.

Agency: European Commission | Branch: H2020 | Program: RIA | Phase: NMBP-10-2016 | Award Amount: 5.85M | Year: 2017

Lysosomal storage disorders (LSD) diseases are a group of rare diseases that currently lack a definitive cure. LSD incidence is about 1:5,000 - 1:10,000, representing a serious global health problem. In the case of Fabry LSD Disease (FD), the deficiency in -Galactosidase A (GLA) enzyme activity results in the cellular accumulation of neutral glycosphingolipids, leading to widespread vasculopathy with particular detriment to the kidneys, heart and nervous system. The current treatment for FD is the Enzyme Replacement Therapy (ERT), in which free GLA recombinant protein is administered intravenously to patients. ERT exhibits several drawbacks mainly related to the instability, high immunogenicity and low efficacy of the exogenously administered GLA to cross biological barriers, such as cell membranes and BBB.The aim of Samrt-4-Fabry project is to achieve excellent quality control over the assembly of the different molecular components of a new liposomal nanoformulation of GLA, nano-GLA, for the treatment of Fabry disease. Nanoformulated GLA has already shown to have better PK/PD profile than free GLA and higher efficacy in vivo. Smart-4-Fabry project will advance nano-GLA from an experimental PoC (TRL3) to preclinical regulatory phase (TRL5-6). A one-step method based on the use of green cCO2, will be used for the manufacturing of this novel nanoformulation under GMPs. The final GLA nanoformulation will have tailored transport of GLA through cell membranes and BBB. Fulfillment of Smart-4-Fabry will impact on a major health problem, the existence of new therapies for rare diseases, which constitutes a priority societal challenge as shown in the H2020 Work Programmes. Another important impact is related to its contribution to support the European Strategy for KETs, which aims to reverse the decline in manufacturing as this will stimulate growth and jobs. Smart-4-Fabry is strongly focusing on three KETs: nanotechnology, industrial biotechnology and advanced materials.

Loading Technion - Israel Institute of Technology collaborators
Loading Technion - Israel Institute of Technology collaborators