Time filter

Source Type

Delft, Netherlands

Delft University of Technology ft]), also known as TU Delft, is the largest and oldest Dutch public technical university, located in Delft, Netherlands. With eight faculties and numerous research institutes it hosts over 19,000 students , more than 3,300 scientists and more than 2,200 people in the support and management staff.The university was established on January 8, 1842 by King William II of the Netherlands as a Royal Academy, with the main purpose of training civil servants for the Dutch East Indies. The school rapidly expanded its research and education curriculum, becoming first a Polytechnic School in 1864, Institute of Technology in 1905, gaining full university rights, and finally changing its name to Delft University of Technology in 1986.Dutch Nobel laureates Jacobus Henricus van 't Hoff, Heike Kamerlingh Onnes, and Simon van der Meer have been associated with TU Delft. TU Delft is a member of several university federations including the IDEA League, CESAER, UNITECH, and 3TU. Wikipedia.

Straathof A.J.J.,Technical University of Delft
Chemical Reviews | Year: 2014

Transformation of biomass into commodity chemicals using enzymes or cells will be successful if the production process is more attractive than for alternative options to produce these chemicals. Sufficient second generation biomass should be available for a reasonable price, the price will not only be dictated by the biomass production but also by competitive uses of this biomass such as combustion for energy generation. All biomass components should be convertible into product, or otherwise into valuable coproduct. Too high bioreactor investments, due to high O2 requirements or too low productivities, should be avoided. Biochemical processes compete with chemical processes that aim at similar routes from biomass to product. The biochemical process should be more selective or should avoid production and isolation of intermediate chemicals. Scientific discoveries and method development have been very important to increase the rate of development of biochemical routes. Source

Sheldon R.A.,Technical University of Delft
Chemical Society Reviews | Year: 2012

In this tutorial review, the fundamental concepts underlying the principles of green and sustainable chemistry - atom and step economy and the E factor - are presented, within the general context of efficiency in organic synthesis. The importance of waste minimisation through the widespread application of catalysis in all its forms - homogeneous, heterogeneous, organocatalysis and biocatalysis - is discussed. These general principles are illustrated with simple practical examples, such as alcohol oxidation and carbonylation and the asymmetric reduction of ketones. The latter reaction is exemplified by a three enzyme process for the production of a key intermediate in the synthesis of the cholesterol lowering agent, atorvastatin. The immobilisation of enzymes as cross-linked enzyme aggregates (CLEAs) as a means of optimizing operational performance is presented. The use of immobilised enzymes in catalytic cascade processes is illustrated with a trienzymatic process for the conversion of benzaldehyde to (S)-mandelic acid using a combi-CLEA containing three enzymes. Finally, the transition from fossil-based chemicals manufacture to a more sustainable biomass-based production is discussed. © 2012 The Royal Society of Chemistry. Source

Sheldon R.A.,Technical University of Delft
Green Chemistry | Year: 2014

The various strategies for the valorisation of waste biomass to platform chemicals, and the underlying developments in chemical and biological catalysis which make this possible, are critically reviewed. The option involving the least changes to the status quo is the drop-in strategy of complete deoxygenation to petroleum hydrocarbons and further processing using existing technologies. The alternative, redox economic approach, is direct conversion of, for example, carbohydrates to oxygenates by fermentation or chemocatalytic processes. Examples of both approaches are described, e.g. fermentation of carbohydrates to produce hydrocarbons, lower alcohols, diols and carboxylic acids or acid catalyzed hydrolysis of hexoses to hydroxymethyl furfural (HMF) and subsequent conversion to levulinic acid (LA), γ-valerolactone (GVL) and furan dicarboxylic acid (FDCA). Three possible routes for producing a bio-based equivalent of the large volume polymer, polyethylene terephthalate (PET) are delineated. Valorisation of waste protein could, in the future, form an important source of amino acids, such as l-glutamic acid and l-lysine, as platform chemicals, which in turn can be converted to nitrogen containing commodity chemicals. Glycerol, the coproduct of biodiesel manufacture from triglycerides, is another waste stream for which valorisation to commodity chemicals, such as epichlorohydrin and acrolein, is an attractive option. © 2014 The Royal Society of Chemistry. Source

Technical University of Delft | Date: 2015-11-03

A highly crystalline graphene and the coating of said graphene with a layer. Said graphene may have further structures, such as nanopores, nanogaps, and nanoribbons. The coated graphene can be used for biomolecular analysis and modification, such as DNA-sequencing, as a sensor, etc.

Technical University of Delft | Date: 2015-05-01

An apparatus for carrying and transporting a product, comprising a conveyor having a surface, which surface is during use directed towards the product and is provided with inlet openings and outlet openings for a medium for supporting and providing the product with traction, wherein the surface is divided into adjacent surface parts, and wherein the inlet openings and outlet openings are provided in the vicinity of the surface parts, and said adjacent surface parts are adjustable in height and/or form and/or shape so as to control the flow of the medium from the inlet openings to the outlet openings.

Discover hidden collaborations