Entity

Time filter

Source Type

Skørping, Denmark

Lal M.,PATH | Priddy S.,PATH | Bourgeois L.,PATH | Walker R.,PATH | And 6 more authors.
Vaccine | Year: 2013

Vaccination is considered the most cost-effective approach to preventing infectious diseases, yet better formulations and delivery methods for efficient distribution and administration of vaccines are needed, especially for low-resource settings. A fast-dissolving tablet (FDT) that could be packaged in a compact stackable blister sheet is a potentially attractive option for formulating oral vaccines, since it would minimally impact the cold chain and could potentially be administered directly to patients without reconstitution. This study focused on using one component of a live attenuated trivalent vaccine under development to produce a FDT for the prevention of diarrhea induced by enterotoxigenic Escherichia coli (ETEC). Ten formulations were prepared and freeze dried to produce FDTs. Three freezing conditions were explored, along with different drying and package sealing methods. Physical properties examined included structural integrity, dissolution time, moisture content, and glass transition temperature. Bacterial viability was tested by assaying for colony-forming units. The formulation compositions and freeze-drying parameters were adjusted in an iterative process to arrive at a promising formulation for the ETEC vaccine tablet. This formulation included sucrose and trehalose as cryoprotectants; phosphate and glutamate salts as buffers and stabilizers; and Natrosol®, polyvinylpyrrolidone, and mannitol as binders. The process loss in viability during freeze drying was less than 0.3log10 (50% recovery) for the optimized vaccine tablet formulation. The final tablets were robust, disintegrated in less than 10s, and preserved the bacteria at 2-8°C for at least 12 months with less than 0.4log10 loss (40% recovery) in viability during storage. This study indicates that the FDT produced by freeze drying directly in a blister sheet could be a practical option for formulating ETEC vaccines for oral immunization and help to facilitate delivery of lifesaving vaccines, particularly in low-resource settings. © 2013 Elsevier Ltd. Source


Harro C.,Center for Immunization Research | Sack D.,Center for Immunization Research | Bourgeois A.L.,PATH | Walker R.,PATH | And 5 more authors.
Clinical and Vaccine Immunology | Year: 2011

Immune responses against colonization factors (CFs) and the nontoxic B component of the enterotoxigenic Escherichia coli (ETEC) heat-labile toxin (LTB) are considered to be important for immunity against diarrhea caused by ETEC. Individual live attenuated ETEC derivatives that have had their toxin genes removed and whose aroC, ompC, and ompF genes are deleted have shown promise as vaccines against ETEC. The development of such strains has culminated in the testing of a three-strain-combination live attenuated vaccine known as ACE527, comprised of strains ACAM2025 expressing colonization factor antigen I (CFA/I) and LTB; ACAM2022, expressing CS5, CS6, and LTB; and ACAM2027, expressing CS1, CS2, CS3, and LTB. The recombinant CF and LTB genes expressed in the three strains were inserted into the bacterial chromosome to ensure their stable inheritance and expression without the requirement for any selection. ACE527 has been tested in a randomized placebo-controlled, double-blind, phase I safety and immunogenicity study in healthy adult volunteers and proved to be well tolerated and immunogenic at dose levels of 10 10 and 10 11 total CFU. There was no indication of strain interference on the basis of fecal shedding patterns, with all three being detected in the feces of 50% and 83% of low- and high-dose vaccine recipients, respectively. Similarly, strong immune responses to LTB and to CFs expressed on all three constituent strains were induced, with at least 50% of subjects in the high-dose group responding to LTB, CFA/I, CS3, and CS6. Copyright © 2011, American Society for Microbiology. All Rights Reserved. Source


Darsley M.J.,TD Vaccines A S | Buchwaldt C.,TD Vaccines A S | Bourgeois A.L.,PATH | Walker R.,PATH
Clinical and Vaccine Immunology | Year: 2012

An oral, live attenuated, three-strain recombinant bacterial vaccine, ACE527, was demonstrated to generate strong immune responses to colonization factor and toxin antigens of enterotoxigenic Escherichia coli (ETEC) in human volunteers. The vaccine was safe and well tolerated at doses of up to 10 11 CFU, administered in each of two doses given 21 days apart. These observations have now been extended in a phase 2b study with a total of 70 subjects. Fifty-six of these subjects were challenged 28 days after the second dose of vaccine with the highly virulent ETEC strain H10407 to obtain preliminary indicators of efficacy against disease and to support further development of the vaccine for both travelers and infants in countries where ETEC is endemic. The vaccine had a significant impact on intestinal colonization by the challenge strain, as measured by quantitative fecal culture 2 days after challenge, demonstrating the induction of a functional immune response to the CFA/I antigen. The incidence and severity of diarrhea were also reduced in vaccinees as measured by a number of secondary and ad hoc endpoints, although the 27% reduction seen in the primary endpoint, moderate to severe diarrhea, was not statistically significant. Together, these observations support the hypothesis that the ACE527 vaccine has a dual mode of action, targeting both colonization factors and the heat-labile enterotoxin (LT), and suggest that it should be further developed for more advanced trials to evaluate its impact on the burden of ETEC disease in field settings. Copyright © 2012, American Society for Microbiology. All Rights Reserved. Source


Turner A.K.,TD Vaccines A S | Turner A.K.,Wellcome Trust Sanger Institute | Stephens J.C.,TD Vaccines A S | Stephens J.C.,University of Cambridge | And 6 more authors.
Clinical and Vaccine Immunology | Year: 2011

Live attenuated oral enterotoxigenic Escherichia coli (ETEC) vaccines have been demonstrated to be safe and immunogenic in human volunteers and to provide a viable approach to provide protection against this important pathogen. This report describes the construction of new ETEC vaccine candidate strains from recent clinical isolates and their characterization. All known genes for ETEC toxins were removed, and attenuating deletion mutations were made in the aroC, ompC, and ompF chromosomal genes. An isolate expressing coli surface antigen 2 (CS2), CS3, heat-labile toxin (LT), heat-stable toxin (ST), and enteroaggregative Escherichia coli heat-stable toxin 1 (EAST1) was attenuated to generate ACAM2007. The subsequent insertion of the operon encoding CS1 created ACAM2017, and this was further modified by the addition of an expression cassette containing the eltB gene, encoding a pentamer of B subunits of LT (LTB), to generate ACAM2027. Another isolate expressing CS5, CS6, LT, ST, and EAST1 was attenuated to generate ACAM2006, from which a lysogenic prophage was deleted to create ACAM2012 and an LTB gene was introduced to form ACAM2022. Finally, a previously described vaccine strain, ACAM2010, had the eltB gene incorporated to generate ACAM2025. All recombinant genes were incorporated into the chromosomal sites of the attenuating mutations to ensure maximal genetic stability. The expression of the recombinant antigens and the changes in plasmids accompanying the deletion of toxin genes are described. Strains ACAM2025, ACAM2022, and ACAM2027 have been combined to create the ETEC vaccine formulation ACE527, which has recently successfully completed a randomized, double-blind, placebo-controlled phase I trial and is currently undergoing a randomized, double-blind placebo-controlled phase II challenge trial, both in healthy adult volunteers. Copyright © 2011, American Society for Microbiology. All Rights Reserved. Source

Discover hidden collaborations