TCM Group

Cambridge, United Kingdom

TCM Group

Cambridge, United Kingdom
SEARCH FILTERS
Time filter
Source Type

MONROVIA, CA--(Marketwired - May 10, 2017) - Cantech Holding, Inc., formerly Reve Technologies, Inc., ( : BSSP) (the "Company" or "Cantech") a development stage immunotherapeutic based technology company today announced it has executed a Memorandum of Understanding (the "MOU") between TCM Group ("TCM") and Cantech Intl. Group Mexico ("CIGM"), a to be newly formed unit of Cantech Holding, Inc. for the construction of a manufacturing facility in the city of Tijuana B.C. Mexico. Updating the previously reported August 19, 2016 announcement, and based on several months of discussion and developments the resulting new collaborative joint venture now directly between the principle scientists entities proposes i) TCM will manufacture the specific compound T Cell Modulator and ii) CIGM will manufacture the specific compound Irreversible Pepsin Fraction to be marketed and sold as a newly combined treatment as well as for individual compound applications. All products require authorization to manufacture and sale under the health and sanitary legal framework of Mexico. Dr. Hector Zepeda Lopez on behalf of TCM, and Harry Zhabilov, CSO of Cantech Holding and on behalf of CIGM will endeavor to form a new compound from the combination of the two existing treatments, T Cell Modulator and the Irreversible Pepsin Fraction to become a registered medicine as part of the application with COFEPRIS for approval and integration into the current Human Studies of the T Cell Modulator to fast track the approval process. The primary focus of the new compound will be for inclusion in the Health Department of Mexico City "Doctor at Home Program" which has indicated the potential acceptance of Dr. Zepeda's treatment protocol. The "Doctor at Home Program" has been very successful and it is now being franchised to other government health organizations in central and South American countries. Through the joint venture the new compound would be produced for commercial sales nationwide in the United Mexican States and in other Latin American countries participating in the Doctor at Home Program spearheaded by Mexico. About Canteck Pharma, Inc. IPF for Cancer treatment Immunotherapy has the potential to provide an alternative and/or complementary treatment in combination with other immune base therapy for several types of cancer. The advantage of immunotherapy over radiation and chemotherapy is that it can act specifically against the tumor without causing normal tissue damage. Current data indicates that immune protection against all cancer requires the generation of a potent cellular immune response against a unique tumor antigen expressed by the malignant cell. As a consequence successful immune protection first requires a unique antigen expressed in the tumor cells (tumor specific antigen) and second, an induction of a potent T-cell immune response, targeted to the tumor antigen. Unfortunately the immune system by itself can't recognize specific tumor antigens and reject them; however recent advances have revealed that certain proteins binding with specific tumor antigens can be recognized by the immune system, this is what IPF does. IPF proteins attach to tumor antigens, creating super-antigens (Sags), which increases the number of antibodies against the malignant cells and induces a potent T-cell immune response targeted to the tumor antigen. For a stronger immune response, IPF may be paired with different kinds of adjuvants such as IL-2, IL-6, IL-12 or other cytokines. Another form of immunotherapy can also provide active immunization, which allows for amplification of the immune response. In addition, vaccines can generate a memory immune response. Recent advances have revealed that any cellular protein (expressed in virally infected cells or cancer cells) can be recognized by the immune system if those proteins are presented to the immune system in a form that results in an activation rather than ignorance or tolerance to the antigen. In addition, T-cells rather than B-cells are usually responsible for this recognition. It is important to point out that when we discuss vaccines for cancer we are referring to treatment rather than prevention, because the antigens expressed by tumor cells (which are the immunogens recognized by the immune system) are not yet known. Attaching known proteins will increase the number of antibodies to fight against them. This mechanism of action will give us an exact answer (known antigens we have to make known for immune system). In contrast we can use vaccines to prevent infectious diseases because the antigens expressed the causative agent -- fraction and/or its proteins that can attach, serve as the immunogen are already known. About Cantech Holding, Inc. (f/k/a Reve Technologies, Inc.) The Company was incorporated on May 11, 2010 (Date of Inception) under the laws of the State of Nevada, as Bassline Productions, Inc. On March 21, 2014 the Company amended its articles of incorporation and changed its name to Reve Technologies, Inc. and investing to develop and market emerging hardware, mobile and web applications later establishing a new Capital Purchase Division. The Company is now a transitioning forward with the acquisition of an Exclusive License Agreement for Patented Technology for Irreversible Pepsin Fraction (IPF) specific to the Cancer indication only, for Mexico with privately held immune-oncology and Therapeutics company. Through the terms for the Company's Exclusive Sub Licensing Agreement with Canteck Pharma, Inc. we will focus on the development, manufacture and commercialize our lead product Irreversible Pepsin Fraction (IPF) specific to the Cancer indication only, for Mexico. The Company changed its name to Cantech Holding, Inc. effective on May 27, 2016 and its domicile to Wyoming from Nevada also effective on May 27, 2016. About TCM, the TCM Group, Dr. Hector Zepeda Lopez Ph. D. and Mario Rodriguez Ph.D. The collaboration and association with TCM merits a description of the principal members of the TCM group, starting with Dr. Zepeda Lopez holder of the Influenza virus H1N1 vaccine patent and developed for the 2009 pandemic outbreak in Mexico, Dr. Zepeda holds 6 Ph.Ds. and has had post-doctoral stays at Sick Children Hospital, Microbiology Section Toronto Canada,Health Science Center Molecular Biology Dept. Texas University USA, Karolinska Institute Molecular Diagnostic Dept. Stockholm Sweden, Pasteur Institute Molecular Pathogenesis Dept. Paris France and the Center of Development Vaccine Baltimore USA 1997. Also integrating the TCM group is Mario Rodriguez Ph.D. and scientist and engineer with vast experience in physic, electronic, optical technologies, state of the technology set up and manufacturing, with degrees from San Diego State University and the University of California Irvine, as well as a Ph.D. from the Imperial College in London. Mario currently participates directing the manufacturing efforts of highly specialized defense systems for several contractors, his expertise in GMP and highly specialized and regulated facilities setup and organization is of the most important usefulness in this endeavor. TCM is capable of modulating the immune response through activation of specific molecules involved in controlling innate immunity termed "toll like receptors". Clinical data has been generated in a variety of immunologically-associated conditions including multiple sclerosis, viral infections, and cancer. In vitro data demonstrates consistent production of immune modulatory cytokines including interferons and interleukins after treatment of immune cells with TCM. This release contains statements that constitute forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. These statements appear in a number of places in this release and include all statements that are not statements of historical fact regarding the intent, belief or current expectations of Cantech Holding, Inc., its directors or its officers with respect to, among other things: (i) financing plans; (ii) trends affecting its financial condition or results of operations; (iii) growth strategy and operating strategy. The words "may," "would," "will," "expect," "estimate," "can," "believe," "potential" and similar expressions and variations thereof are intended to identify forward-looking statements. Investors are cautioned that any such forward-looking statements are not guarantees of future performance and involve risks and uncertainties, many of which are beyond Cantech Holding, Inc.'s ability to control, and that actual results may differ materially from those projected in the forward-looking statements as a result of various factors. More information about the potential factors that could affect the business and financial results is and will be included in Cantech Holding, Inc.'s filings with the Securities and Exchange Commission.


Cooper N.R.,Tcm Group | Dalibard J.,Kastler-Brossel Laboratory | Dalibard J.,Collège de France
Physical Review Letters | Year: 2013

We present a robust scheme by which fractional quantum Hall states of bosons can be achieved for ultracold atomic gases. We describe a new form of optical flux lattice, suitable for commonly used atomic species with ground state angular momentum Jg=1, for which the lowest energy band is topological and nearly dispersionless. Through exact diagonalization studies, we show that, even for moderate interactions, the many-body ground states consist of bosonic fractional quantum Hall states, including the Laughlin state and the Moore-Read (Pfaffian) state. These phases are shown to have energy gaps that are larger than temperature scales achievable in ultracold gases. © 2013 American Physical Society.


News Article | February 21, 2017
Site: www.pressat.co.uk

Tuesday 21 February, 2017 The management and members of the Professional mediators Association (PMA) are thrilled to welcome over 30 tax dispute mediators from HM Revenue & Customs (HMRC) as accredited members of the PMA. The PMA is committed to delivering excellence across all areas of mediation and Alternative Dispute Resolution (ADR). We are delighted that HMRC have chosen the PMA as the standard bearer for best practice in tax dispute mediation.Each of the HMRC tax dispute mediators has undertaken a rigorous accredited training programme designed and delivered by The PMA’s training partners at The TCM Group. The route to accreditation for HMRC mediators included completing an assessed role play and the completion of a detailed learning journal.David Liddle, president of the Professional Mediators Association added: “We are delighted that HMRC have chosen the PMA as their mediator certification body and we look forward to working with HMRC and other Government Departments to ensure that they uphold the highest of professional standards going forward.”About the PMAThe Professional Mediators' Association is an independent, not for profit company formed in 2007 to act as a professional body for a community of mediators working across the UK and globally. The PMA exists to raise awareness of mediation and to promote excellence in all aspects of business, workplace, employment and consumer mediation. Our aim is to provide a voice for professional mediators and to influence government policy and decision making whilst raising the profile and standards of mediation practice. For more details and to join the PMA, please visit www.professionalmediator.org.##Ends## Notes to editorsFor more details please contact David Liddle at the Professional Mediators' Association (david.liddle@professionalmediator.org)The Professional Mediators' Association exists to promote excellence in all aspects of business, workplace, employment and consumer mediation.Visit www.professionalmediator.org for more information and to download a membership pack.For press and media enquiries, or to arrange an interview, please contact David Liddle on 020 7404 3186 or e-mail: david.liddle@professionalmediator.org. http://www.professionalmediator.org/ * For more information regarding media usage, ownership and rights please contact The Professional Medaitors' Association. Distributed by http://www.pressat.co.uk/


Price H.M.,TCM Group | Cooper N.R.,TCM Group
Physical Review Letters | Year: 2013

Topological energy bands have important geometrical properties described by the Berry curvature. We show that the Berry curvature changes the hydrodynamic equations of motion for a trapped Bose-Einstein condensate, and causes significant modifications to the collective mode frequencies. We illustrate our results for the case of two-dimensional Rashba spin-orbit coupling in a Zeeman field. Using an operator approach, we derive the effects of Berry curvature on the dipole mode in very general settings. We show that the sizes of these effects can be large and readily detected in experiment. Collective modes therefore provide a sensitive way to measure geometrical properties of energy bands. © 2013 American Physical Society.


Beri B.,Tcm Group | Cooper N.R.,Tcm Group
Physical Review Letters | Year: 2011

We describe how optical dressing can be used to generate band structures for ultracold atoms with nontrivial Z2 topological order. Time-reversal symmetry is preserved by simple conditions on the optical fields. We first show how to construct optical lattices that give rise to Z2 topological insulators in two dimensions. We then describe a general method for the construction of three-dimensional Z2 topological insulators. A central feature of our approach is a new way to understand Z2 topological insulators starting from the nearly free electron limit. © 2011 American Physical Society.


Knolle J.,Tcm Group | Cooper N.R.,Tcm Group
Physical Review Letters | Year: 2015

The de Haas-van Alphen effect (dHvAE), describing oscillations of the magnetization as a function of magnetic field, is commonly assumed to be a definite sign for the presence of a Fermi surface (FS). Indeed, the effect forms the basis of a well-established experimental procedure for accurately measuring FS topology and geometry of metallic systems, with parameters commonly extracted by fitting to the Lifshitz-Kosevich (LK) theory based on Fermi liquid theory. Here we show that, in contrast to this canonical situation, there can be quantum oscillations even for band insulators of certain types. We provide simple analytic formulas describing the temperature dependence of the quantum oscillations in this setting, showing strong deviations from LK theory. We draw connections to recent experiments and discuss how our results can be used in future experiments to accurately determine, e.g., hybridization gaps in heavy-fermion systems. © 2015 American Physical Society.


Scaffidi T.,Ecole Normale Superieure de Paris | Scaffidi T.,University of Oxford | Moller G.,TCM Group
Physical Review Letters | Year: 2012

We show how the phases of interacting particles in topological flat bands, known as fractional Chern insulators, can be adiabatically connected to incompressible fractional quantum Hall liquids in the lowest Landau level of an externally applied magnetic field. Unlike previous evidence suggesting the similarity of these systems, our approach enables a formal proof of the equality of their topological orders, and furthermore this proof robustly extends to the thermodynamic limit. We achieve this result using the hybrid Wannier orbital basis proposed by Qi in order to construct interpolation Hamiltonians that provide continuous deformations between the two models. We illustrate the validity of our approach for the ground state of bosons in the half filled Chern band of the Haldane model, showing that it is adiabatically connected to the ν=1/2 Laughlin state of bosons in the continuum fractional quantum Hall problem. © 2012 American Physical Society.


Price H.M.,TCM Group | Cooper N.R.,TCM Group
Physical Review A - Atomic, Molecular, and Optical Physics | Year: 2012

We propose a general method by which experiments on ultracold gases can be used to determine the topological properties of the energy bands of optical lattices, as represented by the map of the Berry curvature across the Brillouin zone. The Berry curvature modifies the semiclassical dynamics and hence the trajectory of a wave packet undergoing Bloch oscillations. However, in two dimensions these trajectories may be complicated Lissajous-like figures, making it difficult to extract the effects of Berry curvature in general. We propose how this can be done using a "time-reversal" protocol. This compares the velocity of a wave packet under positive and negative external force, and allows a clean measurement of the Berry curvature over the Brillouin zone. We discuss how this protocol may be implemented and explore the semiclassical dynamics for three specific systems: the asymmetric hexagonal lattice and two "optical flux" lattices in which the Chern number is nonzero. Finally, we discuss general experimental considerations for observing Berry curvature effects in ultracold gases. © 2012 American Physical Society.


Moller G.,TCM Group | Cooper N.R.,TCM Group
Physical Review Letters | Year: 2012

We study correlated phases occurring in the flat lowest band of the dice-lattice model at flux density one-half. We discuss how to realize this model, also referred to as the T 3 lattice, in cold atomic gases. We construct the projection of the model to the lowest dice band, which yields a Hubbard Hamiltonian with interaction-assisted hopping processes. We solve this model for bosons in two limits. In the limit of large density, we use Gross-Pitaevskii mean-field theory to reveal time-reversal symmetry breaking vortex lattice phases. At low density, we use exact diagonalization to identify three stable phases at fractional filling factors ν of the lowest band, including a classical crystal at ν=1/3, a supersolid state at ν=1/2, and a Mott insulator at ν=1. © 2012 American Physical Society.


Bilitewski T.,Tcm Group | Cooper N.R.,Tcm Group
Physical Review A - Atomic, Molecular, and Optical Physics | Year: 2015

Motivated by recent experimental implementations of artificial gauge fields for gases of cold atoms, we study the scattering properties of particles that are subjected to time-periodic Hamiltonians. Making use of Floquet theory, we focus on translationally invariant situations in which the single-particle dynamics can be described in terms of spatially extended Floquet-Bloch waves. We develop a general formalism for the scattering of these Floquet-Bloch waves. An important role is played by the conservation of Floquet quasienergy, which is defined only up to the addition of integer multiples of ω for a Hamiltonian with period T=2π/ω. We discuss the consequences of this for the interpretation of "elastic" and "inelastic" scattering in cases of physical interest. We illustrate our general results with applications to the scattering of a single particle in a Floquet-Bloch state from a static potential and the scattering of two bosonic particles in Floquet-Bloch states through their interparticle interaction. We analyze examples of these scattering processes that are closely related to the schemes used to generate artificial gauge fields in cold-atom experiments, through optical dressing of internal states, or through time-periodic modulations of tight-binding lattices. We show that the effects of scattering cannot, in general, be understood by an effective time-independent Hamiltonian, even in the limit ω→ of rapid modulation. We discuss the relative sizes of the elastic scattering (required to stabilize many-body phases) and of the inelastic scattering (leading to deleterious heating effects). In particular, we describe how inelastic processes that can cause significant heating in the current experimental setup can be switched off by additional confinement of transverse motion. © 2015 American Physical Society.

Loading TCM Group collaborators
Loading TCM Group collaborators