Entity

Time filter

Source Type

Guangzhou, China

Su M.,Chinese University of Hong Kong | Chung H.Y.,Chinese University of Hong Kong | Li Y.,Jinan University | Li Y.,TCM and New Drug Research
Biochemical and Biophysical Research Communications | Year: 2011

Deoxyelephantopin (ESD), a naturally occurring sesquiterpene lactone present in the Chinese medicinal herb, Elephantopus scaber L. exerted anticancer effects on various cultured cancer cells. However, the cellular mechanisms by which it controls the development of the cancer cells are unavailable, particularly the human nasopharyngeal cancer CNE cells. In this study, we found that ESD inhibited the CNE cell proliferation. Cell cycle arrest in S and G2/M phases was also found. Western blotting analysis showed that modulation of cell cycle regulatory proteins was responsible for the ESD-induced cell cycle arrest. Besides, ESD also triggered apoptosis in CNE cells. Dysfunction in mitochondria was found to be associated with the ESD-induced apoptosis as evidenced by the loss of mitochondrial membrane potential (ΔΨm), the translocation of cytochrome c, and the regulation of Bcl-2 family proteins. Despite the Western blotting analysis showed that both intrinsic and extrinsic apoptotic pathways (cleavage of caspases-3, -7, -8, -9, and -10) were triggered in the ESD-induced apoptosis, additional analysis also showed that the induction of apoptosis could be achieved by the caspase-independent manner. Besides, Akt, ERK and JNK pathways were found to involve in ESD-induced cell death. Overall, our findings provided the first evidence that ESD induced cell cycle arrest, and apoptosis in CNE cells. ESD could be a potential chemotherapeutic agent in the treatment of nasopharyngeal cancer (NPC). © 2011 Elsevier Inc. Source


Wang G.-C.,Jinan University | Wang G.-C.,TCM and New Drug Research | Li T.,Jinan University | Li T.,TCM and New Drug Research | And 6 more authors.
Bioorganic and Medicinal Chemistry Letters | Year: 2013

Five new phenolic glycosides, hedyotosides A-E (1-5), including a new cyanogenic glycoside (1), along with 10 known compounds (6-15) were isolated from the whole plants of Hedyotis scandens. The structures of compounds 1-5 were established by extensive spectroscopic analyses and acid hydrolysis. All the isolated compounds were evaluated for their in vitro antiviral activity against respiratory syncytial virus (RSV) with cytopathic effect (CPE) reduction assay. Compounds 6 and 15 showed anti-RSV effects with IC50 values of 20 and 25 μg/mL, respectively. © 2012 Elsevier Ltd. All rights reserved. Source

Discover hidden collaborations