New Brunswick, NJ, United States
New Brunswick, NJ, United States

Time filter

Source Type

Bauman J.D.,Rutgers University | Patel D.,Rutgers University | Baker S.F.,University of Rochester | Vijayan R.S.K.,Rutgers University | And 7 more authors.
ACS Chemical Biology | Year: 2013

Seasonal and pandemic influenza viruses continue to be a leading global health concern. Emerging resistance to the current drugs and the variable efficacy of vaccines underscore the need for developing new flu drugs that will be broadly effective against wild-type and drug-resistant influenza strains. Here, we report the discovery and development of a class of inhibitors targeting the cap-snatching endonuclease activity of the viral polymerase. A high-resolution crystal form of pandemic 2009 H1N1 influenza polymerase acidic protein N-terminal endonuclease domain (PAN) was engineered and used for fragment screening leading to the identification of new chemical scaffolds binding to the PAN active site cleft. During the course of screening, binding of a third metal ion that is potentially relevant to endonuclease activity was detected in the active site cleft of PAN in the presence of a fragment. Using structure-based optimization, we developed a highly potent hydroxypyridinone series of compounds from a fragment hit that defines a new mode of chelation to the active site metal ions. A compound from the series demonstrating promising enzymatic inhibition in a fluorescence-based enzyme assay with an IC50 value of 11 nM was found to have an antiviral activity (EC50) of 11 μM against PR8 H1N1 influenza A in MDCK cells. © 2013 American Chemical Society.


Kelley C.,Rutgers University | Zhang Y.,TAXIS Pharmaceuticals Inc. | Parhi A.,TAXIS Pharmaceuticals Inc. | Kaul M.,Johnson University | And 2 more authors.
Bioorganic and Medicinal Chemistry | Year: 2012

The emergence of multidrug-resistant bacteria has created an urgent need for antibiotics with a novel mechanism of action. The bacterial cell division protein FtsZ is an attractive target for the development of novel antibiotics. The benzo[c]phenanthridinium sanguinarine and the dibenzo[a,g]quinolizin-7-ium berberine are two structurally similar plant alkaloids that alter FtsZ function. The presence of a hydrophobic functionality at either the 1-position of 5-methylbenzo[c]phenanthridinium derivatives or the 2-position of dibenzo[a,g]quinolizin-7-ium derivatives is associated with significantly enhanced antibacterial activity. 3-Phenylisoquinoline represents a subunit within the ring-systems of both of these alkaloids. Several 3- phenylisoquinolines and 3-phenylisoquinolinium derivatives have been synthesized and evaluated for antibacterial activity against Staphylococcus aureus and Enterococcus faecalis, including multidrug-resistant strains of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). A number of derivatives were found to have activity against both MRSA and VRE. The binding of select compounds to S. aureus FtsZ (SaFtsZ) was demonstrated and characterized using fluorescence spectroscopy. In addition, the compounds were shown to act as stabilizers of SaFtsZ polymers and concomitant inhibitors of SaFtsZ GTPase activity. Toxicological assessment of select compounds revealed minimal cross-reaction mammalian β-tubulin as well as little or no human cytotoxicity. © 2012 Elsevier Ltd. All rights reserved.


Parhi A.,TAXIS Pharmaceuticals Inc. | Lu S.,TAXIS Pharmaceuticals Inc. | Kelley C.,Rutgers University | Kaul M.,Johnson University | And 2 more authors.
Bioorganic and Medicinal Chemistry Letters | Year: 2012

Berberine is a substituted dibenzo[a,g]quinolizin-7-ium derivative whose modest antibiotic activity is derived from its disruptive impact on the function of the essential bacterial cell division protein FtsZ. The present study reveals that the presence of a biphenyl substituent at either the 2- or 12-position of structurally-related dibenzo[a,g]quinolizin-7-ium derivatives significantly enhances antibacterial potency versus Staphylococcus aureus and Enterococcus faecalis. Studies with purified S. aureus FtsZ demonstrate that both 2- and 12-biphenyl dibenzo[a,g]quinolizin-7-ium derivatives act as enhancers of FtsZ self-polymerization. © 2012 Elsevier Ltd. All rights reserved.


Kaul M.,Rutgers Robert Wood Johnson Medical School | Zhang Y.,Taxis Pharmaceuticals Inc. | Parhi A.K.,Taxis Pharmaceuticals Inc. | Lavoie E.J.,Rutgers University | Pilch D.S.,Rutgers Robert Wood Johnson Medical School
Biochemical Pharmacology | Year: 2014

Infections caused by Gram-negative bacterial pathogens are often difficult to treat, with the emergence of multidrug-resistant strains further restricting clinical treatment options. As a result, there is an acute need for the development of new therapeutic agents active against Gram-negative bacteria. The bacterial protein FtsZ has recently been demonstrated to be a viable antibacterial target for treating infections caused by the Gram-positive bacteria Staphylococcus aureus in mouse model systems. Here, we investigate whether an FtsZ-directed prodrug (TXY436) that is effective against S. aureus can also target Gram-negative bacteria, such as Escherichia coli. We find that the conversion product of TXY436 (PC190723) can bind E. coli FtsZ and inhibit its polymerization/bundling in vitro. However, PC190723 is intrinsically inactive against wild-type E. coli, with this inactivity being derived from the actions of the efflux pump AcrAB. Mutations in E. coli AcrAB render the mutant bacteria susceptible to TXY436. We further show that chemical inhibition of AcrAB in E. coli, as well as its homologs in Klebsiella pneumoniae and Acinetobacter baumannii, confers all three Gram-negative pathogens with susceptibility to TXY436. We demonstrate that the activity of TXY436 against E. coli and K. pneumoniae is bactericidal in nature. Evidence for FtsZ-targeting and inhibition of cell division in Gram-negative bacteria by TXY436 is provided by the induction of a characteristic filamentous morphology when the efflux pump has been inhibited as well as by the lack of functional Z-rings upon TXY436 treatment. © 2014 Elsevier Inc.


Kaul M.,Johnson University | Parhi A.K.,TAXIS Pharmaceuticals Inc. | Zhang Y.,TAXIS Pharmaceuticals Inc. | Lavoie E.J.,Rutgers University | And 4 more authors.
Journal of Medicinal Chemistry | Year: 2012

The prevalence of multidrug resistance among clinically significant bacterial pathogens underscores a critical need for the development of new classes of antibiotics with novel mechanisms of action. Here we describe the synthesis and evaluation of a guanidinomethyl biaryl compound {1-((4′-(tert-butyl)-[1,1′-biphenyl]-3-yl)methyl)guanidine} that targets the bacterial cell division protein FtsZ. In vitro studies with various bacterial FtsZ proteins reveal that the compound alters the dynamics of FtsZ self-polymerization via a stimulatory mechanism, while minimally impacting the polymerization of tubulin, the closest mammalian homologue of FtsZ. The FtsZ binding site of the compound is identified through a combination of computational and mutational approaches. The compound exhibits a broad spectrum of bactericidal activity, including activity against the multidrug-resistant pathogens methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE), while also exhibiting a minimal potential to induce resistance. Taken together, our results highlight the compound as a promising new FtsZ-targeting bactericidal agent. © 2012 American Chemical Society.


Parhi A.,TAXIS Pharmaceuticals Inc. | Kelley C.,Rutgers University | Kaul M.,Johnson University | Pilch D.S.,Johnson University | Lavoie E.J.,Rutgers University
Bioorganic and Medicinal Chemistry Letters | Year: 2012

Antibiotic resistance has prompted efforts to discover antibiotics with novel mechanisms of action. FtsZ is an essential protein for bacterial cell division, and has been viewed as an attractive target for the development of new antibiotics. Sanguinarine is a benzophenanthridine alkaloid that prevents cytokinesis in bacteria by inhibiting FtsZ self-assembly. In this study, a series of 5-methylbenzo[c]phenanthridinium derivatives were synthesized and evaluated for antibacterial activity against Staphylococcus aureus and Enterococcus faecalis. The data indicate that the presence of a 1- or 12-phenyl substituent on 2,3,8,9-tetramethoxy-5-methylbenzo[c]phenanthridinium chloride significantly enhances antibacterial activity relative to the parent compound or sanguinarine. © 2012 Elsevier Ltd. All rights reserved.


Kaul M.,Rutgers Robert Wood Johnson Medical School | Mark L.,Taxis Pharmaceuticals Inc. | Zhang Y.,Taxis Pharmaceuticals Inc. | Parhi A.K.,Taxis Pharmaceuticals Inc. | And 2 more authors.
Antimicrobial Agents and Chemotherapy | Year: 2013

The bacterial cell division protein FtsZ represents a novel antibiotic target that has yet to be exploited clinically. The benzamide PC190723 was among the first FtsZ-targeting compounds to exhibit in vivo efficacy in a murine infection model system. Despite its initial promise, the poor formulation properties of the compound have limited its potential for clinical development. We describe here the development of an N-Mannich base derivative of PC190723 with enhanced drug-like properties and oral in vivo efficacy. The N-Mannich base derivative (TXY436) is~100-fold more soluble than PC190723 in an acidic aqueous vehicle (10 mMcitrate, pH 2.6) suitable for oral in vivo administration. At physiological pH (7.4), TXY436 acts as a prodrug, converting to PC190723 with a conversion half-life of 18.2±1.6 min. Pharmacokinetic analysis following intravenous administration of TXY436 into mice yielded elimination half-lives of 0.26 and 0.96 h for the TXY436 prodrug and its PC190723 product, respectively. In addition, TXY436 was found to be orally bioavailable and associated with significant extravascular distribution. Using a mouse model of systemic infection with methicillin-sensitive Staphylococcus aureus or methicillin-resistant S. aureus, we show that TXY436 is efficacious in vivo upon oral administration. In contrast, the oral administration of PC190723 was not efficacious. Mammalian cytotoxicity studies of TXY436 using Vero cells revealed an absence of toxicity up to compound concentrations at least 64 times greater than those associated with antistaphylococcal activity. These collective properties make TXY436 a worthy candidate for further investigation as a clinically useful agent for the treatment of staphylococcal infections. Copyright © 2013, American Society for Microbiology. All Rights Reserved.


Patent
Rutgers University and Taxis Pharmaceuticals Inc. | Date: 2016-08-31

The invention provides compounds of formula (I): wherein R^(1)-R^(3), n, and W have any of the values defined in the specification, and salts thereof. The compounds have good solubility and are useful for treating bacterial infections.


Patent
Taxis Pharmaceuticals Inc. and Rutgers University | Date: 2015-05-06

The invention provides compounds of formula (I): wherein R^(1)-R^(3), n, and W have any of the values defined in the specification, and salts thereof. The compounds have good solubility and are useful for treating bacterial infections.


Patent
Rutgers University and Taxis Pharmaceuticals Inc. | Date: 2014-11-07

The invention provides compounds of formula (I): wherein R^(1)-R^(3), n, and W have any of the values defined in the specification, and salts thereof. The compounds have good solubility and are useful for treating bacterial infections.

Loading TAXIS Pharmaceuticals Inc. collaborators
Loading TAXIS Pharmaceuticals Inc. collaborators