Time filter

Source Type

Porz am Rhein, Germany

Luisier R.,Novartis | Lempiainen H.,Novartis | Scherbichler N.,Novartis | Braeuning A.,University of Tubingen | And 22 more authors.
Toxicological Sciences

The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CARKO-PXRKO), double humanized CAR and PXR (CARh-PXRh), and wild-type C57BL/6 mice.Wild-type and CARh-PXRh mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1)and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absentin CARKO-PXRKO mouse livers and largely reversible in wild-type and CARh-PXRh mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CARh-PXRh mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. Source

Scheer N.,TaconicArtemis | Wolf C.R.,University of Dundee

1. Drug metabolizing enzymes and transporters play important roles in the absorption, metabolism, tissue distribution and excretion of various compounds and their metabolites and thus can significantly affect their efficacy and safety. Furthermore, they can be involved in drug-drug interactions which can result in adverse responses, life-threatening toxicity or impaired efficacy. Significant species differences in the interaction of compounds with drug metabolizing enzymes and transporters have been described. 2. In order to overcome the limitation of animal models in accurately predicting human responses, a large variety of mouse models humanized for drug metabolizing enzymes and to a lesser extent drug transporters have been created. 3. This review summarizes the literature describing these mouse models and their key applications in studying the role of drug metabolizing enzymes and transporters in drug bioavailability, tissue distribution, clearance and drug-drug interactions as well as in human metabolite testing and risk assessment. 4. Though such humanized mouse models have certain limitations, there is great potential for their use in basic research and for testing and development of new medicines. These limitations and future potentials will be discussed. © 2014 Informa UK Ltd. All rights reserved: reproduction in whole or part not permitted. Source

Ross J.,CXR Biosciences | Plummer S.M.,CXR Biosciences | Rode A.,TaconicArtemis | Scheer N.,TaconicArtemis | And 5 more authors.
Toxicological Sciences

Mouse nongenotoxic hepatocarcinogens phenobarbital (PB) and chlordane induce hepatomegaly characterized by hypertrophy and hyperplasia. Increased cell proliferation is implicated in the mechanism of tumor induction. The relevance of these tumors to human health is unclear. The xenoreceptors, constitutive androstane receptors (CARs), and pregnane X receptor (PXR) play key roles in these processes. Novel "humanized" and knockout models for both receptors were developed to investigate potential species differences in hepatomegaly. The effects of PB (80 mg/kg/4 days) and chlordane (10 mg/kg/4 days) were investigated in double humanized PXR and CAR (huPXR/huCAR), double knockout PXR and CAR (PXRKO/CARKO), and wild-type (WT) C57BL/6J mice. In WT mice, both compounds caused increased liver weight, hepatocellular hypertrophy, and cell proliferation. Both compounds caused alterations to a number of cell cycle genes consistent with induction of cell proliferation in WT mice. However, these gene expression changes did not occur in PXRKO/CARKO or huPXR/huCAR mice. Liver hypertrophy without hyperplasia was demonstrated in the huPXR/huCAR animals in response to both compounds. Induction of the CAR and PXR target genes, Cyp2b10 and Cyp3a11, was observed in both WT and huPXR/huCAR mouse lines following treatment with PB or chlordane. In the PXRKO/CARKO mice, neither liver growth nor induction of Cyp2b10 and Cyp3a11 was seen following PB or chlordane treatment, indicating that these effects are CAR/PXR dependent. These data suggest that the human receptors are able to support the chemically induced hypertrophic responses but not the hyperplastic (cell proliferation) responses. At this time, we cannot be certain that hCAR and hPXR when expressed in the mouse can function exactly as the genes do when they are expressed in human cells. However, all parameters investigated to date suggest that much of their functionality is maintained. © The Author 2010. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. Source

Scheer N.,TaconicArtemis | Ross J.,CXR Biosciences | Kapelyukh Y.,CXR Biosciences | Rode A.,TaconicArtemis | And 2 more authors.
Drug Metabolism and Disposition

Dexamethasone (DEX) is a potent and widely used anti-inflammatory and immunosuppressant glucocorticoid. It can bind and activate the pregnane X receptor (PXR), which plays a critical role as xenobiotic sensor in mammals to induce the expression of many enzymes, including cytochromes P450 in the CYP3A family. This induction results in its own metabolism. We have used a series of transgenic mouse lines, including a novel, improved humanized PXR line, to compare the induction profile of PXR-regulated drug-metabolizing enzymes after DEX administration, as well as looking at hepatic responses to rifampicin (RIF). The new humanized PXR model has uncovered further intriguing differences between the human and mouse receptors in that RIF only induced Cyp2b10 in the new humanized model. DEX was found to be a much more potent inducer of Cyp3a proteins in wild-type mice than in mice humanized for PXR. To assess whether PXR is involved in the detoxification of DEX in the liver, we analyzed the consequences of high doses of the glucocorticoid on hepatotoxicity on different PXR genetic backgrounds. We also studied these effects in an additional mouse model in which functional mouse Cyp3a genes have been deleted. These strains exhibited different sensitivities to DEX, indicating a protective role of the PXR and CYP3A proteins against the hepatotoxicity of this compound. Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics. Source

Hasegawa M.,Kyowa Hakko Kirin Co. | Kapelyukh Y.,CXR Biosciences | Tahara H.,Kyowa Hakko Kirin Co. | Seibler J.,TaconicArtemis | And 6 more authors.
Molecular Pharmacology

Cytochrome P450 (P450) 3A4 is the predominant P450 enzyme expressed in human liver and intestine, and it is involved in the metabolism of approximately 50% of clinically used drugs. Because of the differences in the multiplicity of CYP3A genes and the poor correlation of substrate specificity of CYP3A proteins between species, the extrapolation of CYP3A-mediated metabolism of a drug from animals to man is difficult. This situation is further complicated by the fact that the predictability of the clinically common drug-drug interaction of pregnane X receptor (PXR)-mediated CYP3A4 induction by animal studies is limited as a result of marked species differences in the interaction of many drugs with this receptor. Here we describe a novel multiple humanized mouse line that combines a humanization for PXR, the closely related constitutive androstane receptor, and a replacement of the mouse Cyp3a cluster with a large human genomic region carrying CYP3A4 and CYP3A7. We provide evidence that this model shows a human-like CYP3A4 induction response to different PXR activators, that it allows the ranking of these activators according to their potency to induce CYP3A4 expression in the human liver, and that it provides an experimental approach to quantitatively predict PXR/CYP3A4-mediated drug-drug interactions in humans. Copyright © 2011 The American Society for Pharmacology and Experimental Therapeutics. Source

Discover hidden collaborations