Köln, Germany
Köln, Germany

Time filter

Source Type

Hasegawa M.,Kyowa Hakko Kirin Co. | Kapelyukh Y.,CXR Biosciences | Tahara H.,Kyowa Hakko Kirin Co. | Seibler J.,TaconicArtemis | And 6 more authors.
Molecular Pharmacology | Year: 2011

Cytochrome P450 (P450) 3A4 is the predominant P450 enzyme expressed in human liver and intestine, and it is involved in the metabolism of approximately 50% of clinically used drugs. Because of the differences in the multiplicity of CYP3A genes and the poor correlation of substrate specificity of CYP3A proteins between species, the extrapolation of CYP3A-mediated metabolism of a drug from animals to man is difficult. This situation is further complicated by the fact that the predictability of the clinically common drug-drug interaction of pregnane X receptor (PXR)-mediated CYP3A4 induction by animal studies is limited as a result of marked species differences in the interaction of many drugs with this receptor. Here we describe a novel multiple humanized mouse line that combines a humanization for PXR, the closely related constitutive androstane receptor, and a replacement of the mouse Cyp3a cluster with a large human genomic region carrying CYP3A4 and CYP3A7. We provide evidence that this model shows a human-like CYP3A4 induction response to different PXR activators, that it allows the ranking of these activators according to their potency to induce CYP3A4 expression in the human liver, and that it provides an experimental approach to quantitatively predict PXR/CYP3A4-mediated drug-drug interactions in humans. Copyright © 2011 The American Society for Pharmacology and Experimental Therapeutics.


Scheer N.,TaconicArtemis | Ross J.,CXR Biosciences | Kapelyukh Y.,CXR Biosciences | Rode A.,TaconicArtemis | And 2 more authors.
Drug Metabolism and Disposition | Year: 2010

Dexamethasone (DEX) is a potent and widely used anti-inflammatory and immunosuppressant glucocorticoid. It can bind and activate the pregnane X receptor (PXR), which plays a critical role as xenobiotic sensor in mammals to induce the expression of many enzymes, including cytochromes P450 in the CYP3A family. This induction results in its own metabolism. We have used a series of transgenic mouse lines, including a novel, improved humanized PXR line, to compare the induction profile of PXR-regulated drug-metabolizing enzymes after DEX administration, as well as looking at hepatic responses to rifampicin (RIF). The new humanized PXR model has uncovered further intriguing differences between the human and mouse receptors in that RIF only induced Cyp2b10 in the new humanized model. DEX was found to be a much more potent inducer of Cyp3a proteins in wild-type mice than in mice humanized for PXR. To assess whether PXR is involved in the detoxification of DEX in the liver, we analyzed the consequences of high doses of the glucocorticoid on hepatotoxicity on different PXR genetic backgrounds. We also studied these effects in an additional mouse model in which functional mouse Cyp3a genes have been deleted. These strains exhibited different sensitivities to DEX, indicating a protective role of the PXR and CYP3A proteins against the hepatotoxicity of this compound. Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics.


Scheer N.,TaconicArtemis | Kapelyukh Y.,CXR Biosciences | Chatham L.,University of Dundee | Rode A.,TaconicArtemis | And 3 more authors.
Molecular Pharmacology | Year: 2012

Compared with rodents and many other animal species, the human cytochrome P450 (P450) Cyp2c gene cluster varies significantly in the multiplicity of functional genes and in the substrate specificity of its enzymes. As a consequence, the use of wild-type animal models to predict the role of human CYP2C enzymes in drug metabolism and drug-drug interactions is limited. Within the human CYP2C cluster CYP2C9 is of particular importance, because it is one of the most abundant P450 enzymes in human liver, and it is involved in the metabolism of a wide variety of important drugs and environmental chemicals. To investigate the in vivo functions of cytochrome P450 Cyp2c genes and to establish a model for studying the functions of CYP2C9 in vivo, we have generated a mouse model with a deletion of the murine Cyp2c gene cluster and a corresponding humanized model expressing CYP2C9 specifically in the liver. Despite the high number of functional genes in the mouse Cyp2c cluster and the reported roles of some of these proteins in different biological processes, mice deleted for Cyp2c genes were viable and fertile but showed certain phenotypic alterations in the liver. The expression of CYP2C9 in the liver also resulted in viable animals active in the metabolism and disposition of a number of CYP2C9 substrates. These mouse lines provide a powerful tool for studying the role of Cyp2c genes and of CYP2C9 in particular in drug disposition and as a factor in drug-drug interaction. Copyright © 2012 The American Society for Pharmacology and Experimental Therapeutics.


Ross J.,CXR Biosciences | Plummer S.M.,CXR Biosciences | Rode A.,TaconicArtemis | Scheer N.,TaconicArtemis | And 5 more authors.
Toxicological Sciences | Year: 2010

Mouse nongenotoxic hepatocarcinogens phenobarbital (PB) and chlordane induce hepatomegaly characterized by hypertrophy and hyperplasia. Increased cell proliferation is implicated in the mechanism of tumor induction. The relevance of these tumors to human health is unclear. The xenoreceptors, constitutive androstane receptors (CARs), and pregnane X receptor (PXR) play key roles in these processes. Novel "humanized" and knockout models for both receptors were developed to investigate potential species differences in hepatomegaly. The effects of PB (80 mg/kg/4 days) and chlordane (10 mg/kg/4 days) were investigated in double humanized PXR and CAR (huPXR/huCAR), double knockout PXR and CAR (PXRKO/CARKO), and wild-type (WT) C57BL/6J mice. In WT mice, both compounds caused increased liver weight, hepatocellular hypertrophy, and cell proliferation. Both compounds caused alterations to a number of cell cycle genes consistent with induction of cell proliferation in WT mice. However, these gene expression changes did not occur in PXRKO/CARKO or huPXR/huCAR mice. Liver hypertrophy without hyperplasia was demonstrated in the huPXR/huCAR animals in response to both compounds. Induction of the CAR and PXR target genes, Cyp2b10 and Cyp3a11, was observed in both WT and huPXR/huCAR mouse lines following treatment with PB or chlordane. In the PXRKO/CARKO mice, neither liver growth nor induction of Cyp2b10 and Cyp3a11 was seen following PB or chlordane treatment, indicating that these effects are CAR/PXR dependent. These data suggest that the human receptors are able to support the chemically induced hypertrophic responses but not the hyperplastic (cell proliferation) responses. At this time, we cannot be certain that hCAR and hPXR when expressed in the mouse can function exactly as the genes do when they are expressed in human cells. However, all parameters investigated to date suggest that much of their functionality is maintained. © The Author 2010. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved.


Scheer N.,TaconicArtemis | Kapelyukh Y.,CXR Biosciences | McEwan J.,CXR Biosciences | Beuger V.,TaconicArtemis | And 4 more authors.
Molecular Pharmacology | Year: 2012

The highly polymorphic human cytochrome P450 2D6 enzyme is involved in the metabolism of up to 25% of all marketed drugs and accounts for significant individual differences in response to CYP2D6 substrates. Because of the differences in the multiplicity and substrate specificity of CYP2D family members among species, it is difficult to predict pathways of human CYP2D6-dependent drug metabolism on the basis of animal studies. To create animal models that reflect the human situation more closely and that allow an in vivo assessment of the consequences of differential CYP2D6 drug metabolism, we have developed a novel straightforward approach to delete the entire murine Cyp2d gene cluster and replace it with allelic variants of human CYP2D6. By using this approach, we have generated mouse lines expressing the two frequent human protein isoforms CYP2D6.1 and CYP2D6.2 and an as yet undescribed variant of this enzyme, as well as a Cyp2d cluster knockout mouse. We demonstrate that the various transgenic mouse lines cover a wide spectrum of different human CYP2D6 metabolizer phenotypes. The novel humanization strategy described here provides a robust approach for the expression of different CYP2D6 allelic variants in transgenic mice and thus can help to evaluate potential CYP2D6-dependent interindividual differences in drug response in the context of personalized medicine. Copyright © 2012 The American Society for Pharmacology and Experimental Therapeutics.


Scheer N.,TaconicArtemis | Snaith M.,MedImmune Ltd | Wolf C.R.,University of Dundee | Seibler J.,TaconicArtemis
Drug Discovery Today | Year: 2013

Identifying in vivo models that are naturally predictive for particular areas of study in humans can be challenging due to the divergence that has occurred during speciation. One solution to this challenge that is gaining increasing traction is the use of genetic engineering to introduce human genes into mice to generate superior models for predicting human responses. This review describes the state-of-the-art for generating such models, provides an overview of the types of genetically humanized mouse models described to date and their applications in basic research, drug discovery and development and to understand clinical drug toxicity. We discuss limitations and explore promising future directions for the use of genetically humanized mice to further improve translational research. © 2013 Elsevier Ltd. All rights reserved.


Scheer N.,TaconicArtemis | Wolf C.R.,University of Dundee
Xenobiotica | Year: 2014

1. Drug metabolizing enzymes and transporters play important roles in the absorption, metabolism, tissue distribution and excretion of various compounds and their metabolites and thus can significantly affect their efficacy and safety. Furthermore, they can be involved in drug-drug interactions which can result in adverse responses, life-threatening toxicity or impaired efficacy. Significant species differences in the interaction of compounds with drug metabolizing enzymes and transporters have been described. 2. In order to overcome the limitation of animal models in accurately predicting human responses, a large variety of mouse models humanized for drug metabolizing enzymes and to a lesser extent drug transporters have been created. 3. This review summarizes the literature describing these mouse models and their key applications in studying the role of drug metabolizing enzymes and transporters in drug bioavailability, tissue distribution, clearance and drug-drug interactions as well as in human metabolite testing and risk assessment. 4. Though such humanized mouse models have certain limitations, there is great potential for their use in basic research and for testing and development of new medicines. These limitations and future potentials will be discussed. © 2014 Informa UK Ltd. All rights reserved: reproduction in whole or part not permitted.


PubMed | TaconicArtemis
Type: Journal Article | Journal: Xenobiotica; the fate of foreign compounds in biological systems | Year: 2014

1. Drug metabolizing enzymes and transporters play important roles in the absorption, metabolism, tissue distribution and excretion of various compounds and their metabolites and thus can significantly affect their efficacy and safety. Furthermore, they can be involved in drug-drug interactions which can result in adverse responses, life-threatening toxicity or impaired efficacy. Significant species differences in the interaction of compounds with drug metabolizing enzymes and transporters have been described. 2. In order to overcome the limitation of animal models in accurately predicting human responses, a large variety of mouse models humanized for drug metabolizing enzymes and to a lesser extent drug transporters have been created. 3. This review summarizes the literature describing these mouse models and their key applications in studying the role of drug metabolizing enzymes and transporters in drug bioavailability, tissue distribution, clearance and drug-drug interactions as well as in human metabolite testing and risk assessment. 4. Though such humanized mouse models have certain limitations, there is great potential for their use in basic research and for testing and development of new medicines. These limitations and future potentials will be discussed.


PubMed | TaconicArtemis
Type: Journal Article | Journal: Molecular pharmacology | Year: 2012

Compared with rodents and many other animal species, the human cytochrome P450 (P450) Cyp2c gene cluster varies significantly in the multiplicity of functional genes and in the substrate specificity of its enzymes. As a consequence, the use of wild-type animal models to predict the role of human CYP2C enzymes in drug metabolism and drug-drug interactions is limited. Within the human CYP2C cluster CYP2C9 is of particular importance, because it is one of the most abundant P450 enzymes in human liver, and it is involved in the metabolism of a wide variety of important drugs and environmental chemicals. To investigate the in vivo functions of cytochrome P450 Cyp2c genes and to establish a model for studying the functions of CYP2C9 in vivo, we have generated a mouse model with a deletion of the murine Cyp2c gene cluster and a corresponding humanized model expressing CYP2C9 specifically in the liver. Despite the high number of functional genes in the mouse Cyp2c cluster and the reported roles of some of these proteins in different biological processes, mice deleted for Cyp2c genes were viable and fertile but showed certain phenotypic alterations in the liver. The expression of CYP2C9 in the liver also resulted in viable animals active in the metabolism and disposition of a number of CYP2C9 substrates. These mouse lines provide a powerful tool for studying the role of Cyp2c genes and of CYP2C9 in particular in drug disposition and as a factor in drug-drug interaction.


PubMed | TaconicArtemis
Type: Journal Article | Journal: Drug metabolism and disposition: the biological fate of chemicals | Year: 2012

The multidrug resistance protein (MRP) 2 is predominantly expressed in liver, intestine, and kidney, where it plays an important role in the excretion of a range of drugs and their metabolites or endogenous compounds into bile, feces, and urine. Mrp knockout [Mrp2(-/-)] mice have been used recently to study the role of MRP2 in drug disposition. Here, we describe the first generation and initial characterization of a mouse line humanized for MRP2 (huMRP2), which is nulled for the mouse Mrp2 gene and expresses the human transporter in the organs and cell types where MRP2 is normally expressed. Analysis of the mRNA expression for selected cytochrome P450 and transporter genes revealed no major changes in huMRP2 mice compared with wild-type controls. We show that human MRP2 is able to compensate functionally for the loss of the mouse transporter as demonstrated by comparable bilirubin levels in the humanized mice and wild-type controls, in contrast to the hyperbilirubinemia phenotype that is observed in MRP2(-/-) mice. The huMRP2 mouse provides a model to study the role of the human transporter in drug disposition and in assessing the in vivo consequences of inhibiting this transporter by compounds interacting with human MRP2.

Loading TaconicArtemis collaborators
Loading TaconicArtemis collaborators