Entity

Time filter

Source Type

Redmond, WA, United States

Faber-Hammond J.,Washington State University | Faber-Hammond J.,Portland State University | Samanta M.P.,Systemix Institute | Whitchurch E.A.,Humboldt State University | And 4 more authors.
PLoS ONE | Year: 2015

Acoustic communication is essential for the reproductive success of the plainfin midshipman fish (Porichthys notatus). During the breeding season, type I males use acoustic cues to advertise nest location to potential mates, creating an audible signal that attracts reproductive females. Type II (sneaker) males also likely use this social acoustic signal to find breeding pairs from which to steal fertilizations. Estrogen-induced changes in the auditory system of breeding females are thought to enhance neural encoding of the advertisement call, and recent anatomical data suggest the saccule (the main auditory end organ) as one possible target for this seasonal modulation. Here we describe saccular transcriptomes from all three sexual phenotypes (females, type I and II males) collected during the breeding season as a first step in understanding the mechanisms underlying sexual phenotype-specific and seasonal differences in auditory function. We used RNA-Seq on the Ion Torrent platform to create a combined transcriptome dataset containing over 79,000 assembled transcripts representing almost 9,000 unique annotated genes. These identified genes include several with known inner ear function and multiple steroid hormone receptors. Transcripts most closely matched to published genomes of nile tilapia and large yellow croaker, inconsistent with the phylogenetic relationship between these species but consistent with the importance of acoustic communication in their life-history strategies. We then compared the RNA-Seq results from the saccules of reproductive females with a separate transcriptome from the non-reproductive female phenotype and found over 700 differentially expressed transcripts, including members of the Wnt and Notch signaling pathways that mediate cell proliferation and hair cell addition in the inner ear. These data constitute a valuable resource for furthering our understanding of the molecular basis for peripheral auditory function as well as a range of future midshipman and cross-species comparative studies of the auditory periphery. © 2015 Faber-Hammond et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source


Traeger L.L.,University of Wisconsin - Madison | Volkening J.D.,University of Wisconsin - Madison | Moffett H.,Dana-Farber Cancer Institute | Moffett H.,Harvard University | And 20 more authors.
BMC Genomics | Year: 2015

Background: With its unique ability to produce high-voltage electric discharges in excess of 600 volts, the South American strong voltage electric eel (Electrophorus electricus) has played an important role in the history of science. Remarkably little is understood about the molecular nature of its electric organs. Results: We present an in-depth analysis of the genome of E. electricus, including the transcriptomes of eight mature tissues: brain, spinal cord, kidney, heart, skeletal muscle, Sachs' electric organ, main electric organ, and Hunter's electric organ. A gene set enrichment analysis based on gene ontology reveals enriched functions in all three electric organs related to transmembrane transport, androgen binding, and signaling. This study also represents the first analysis of miRNA in electric fish. It identified a number of miRNAs displaying electric organ-specific expression patterns, including one novel miRNA highly over-expressed in all three electric organs of E. electricus. All three electric organ tissues also express three conserved miRNAs that have been reported to inhibit muscle development in mammals, suggesting that miRNA-dependent regulation of gene expression might play an important role in specifying an electric organ identity from its muscle precursor. These miRNA data were supported using another complete miRNA profile from muscle and electric organ tissues of a second gymnotiform species. Conclusions: Our work on the E. electricus genome and eight tissue-specific gene expression profiles will greatly facilitate future research on determining the coding and regulatory sequences that specify the function, development, and evolution of electric organs. Moreover, these data and future studies will be informed by the first comprehensive analysis of miRNA expression in an electric fish presented here. © 2015 Traeger et al.; licensee BioMed Central. Source


Richardson C.R.,Texas Tech University | Luo Q.-J.,Texas Tech University | Gontcharova V.,Texas Tech University | Jiang Y.-W.,Texas Tech University | And 3 more authors.
PLoS ONE | Year: 2010

Background: MicroRNAs (miRNAs) and trans-acting small-interfering RNAs (tasi-RNAs) are small (20-22 nt long) RNAs (smRNAs) generated from hairpin secondary structures or antisense transcripts, respectively, that regulate gene expression by Watson-Crick pairing to a target mRNA and altering expression by mechanisms related to RNA interference. The high sequence homology of plant miRNAs to their targets has been the mainstay of miRNA prediction algorithms, which are limited in their predictive power for other kingdoms because miRNA complementarity is less conserved yet transitive processes (production of antisense smRNAs) are active in eukaryotes. We hypothesize that antisense transcription and associated smRNAs are biomarkers which can be computationally modeled for gene discovery. Principal Findings: We explored rice (Oryza sativa) sense and antisense gene expression in publicly available whole genome tiling array transcriptome data and sequenced smRNA libraries (as well as C. elegans) and found evidence of transitivity of MIRNA genes similar to that found in Arabidopsis. Statistical analysis of antisense transcript abundances, presence of antisense ESTs, and association with smRNAs suggests several hundred Arabidopsis 'orphan' hypothetical genes are noncoding RNAs. Consistent with this hypothesis, we found novel Arabidopsis homologues of some MIRNA genes on the antisense strand of previously annotated protein-coding genes. A Support Vector Machine (SVM) was applied using thermodynamic energy of binding plus novel expression features of sense/antisense transcription topology and siRNA abundances to build a prediction model of miRNA targets. The SVM when trained on targets could predict the "ancient" (deeply conserved) class of validated Arabidopsis MIRNA genes with an accuracy of 84%, and 76% for "new" rapidlyevolving MIRNA genes. Conclusions: Antisense and smRNA expression features and computational methods may identify novel MIRNA genes and other non-coding RNAs in plants and potentially other kingdoms, which can provide insight into antisense transcription, miRNA evolution, and post-transcriptional gene regulation. © 2010 Richardson et al. Source


Hedgecock D.,University of Southern California | Shin G.,University of Southern California | Gracey A.Y.,University of Southern California | van den Berg D.,University of Southern California | Samanta M.P.,Systemix Institute
G3: Genes, Genomes, Genetics | Year: 2015

The Pacific oyster Crassostrea gigas, a widely cultivated marine bivalve mollusc, is becoming a genetically and genomically enabled model for highly fecund marine metazoans with complex life-histories. A genome sequence is available for the Pacific oyster, as are first-generation, low-density, linkage and gene-centromere maps mostly constructed from microsatellite DNA makers. Here, higher density, secondgeneration, linkage maps are constructed from more than 1100 coding (exonic) single-nucleotide polymorphisms (SNPs), as well as 66 previously mapped microsatellite DNA markers, all typed in five families of Pacific oysters (nearly 172,000 genotypes). The map comprises 10 linkage groups, as expected, has an average total length of 588 cM, an average marker-spacing of 1.0 cM, and covers 86% of a genome estimated to be 616 cM. All but seven of the mapped SNPs map to 618 genome scaffolds; 260 scaffolds contain two or more mapped SNPs, but for 100 of these scaffolds (38.5%), the contained SNPs map to different linkage groups, suggesting widespread errors in scaffold assemblies. The 100 misassembled scaffolds are significantly longer than those that map to a single linkage group. On the genetic maps, marker orders and intermarker distances vary across families and mapping methods, owing to an abundance of markers segregating from only one parent, to widespread distortions of segregation ratios caused by early mortality, as previously observed for oysters, and to genotyping errors. Maps made from framework markers provide stronger support for marker orders and reasonable map lengths and are used to produce a consensus high-density linkage map containing 656 markers. © 2015 Hedgecock et al. Source


Gallant J.R.,Michigan State University | Traeger L.L.,University of Wisconsin - Madison | Volkening J.D.,University of Wisconsin - Madison | Moffett H.,Dana-Farber Cancer Institute | And 19 more authors.
Science | Year: 2014

Little is known about the genetic basis of convergent traits that originate repeatedly over broad taxonomic scales. The myogenic electric organ has evolved six times in fishes to produce electric fields used in communication, navigation, predation, or defense.We have examined the genomic basis of the convergent anatomical and physiological origins of these organs by assembling the genome of the electric eel (Electrophorus electricus) and sequencing electric organ and skeletal muscle transcriptomes from three lineages that have independently evolved electric organs. Our results indicate that, despite millions of years of evolution and large differences in the morphology of electric organ cells, independent lineages have leveraged similar transcription factors and developmental and cellular pathways in the evolution of electric organs. Source

Discover hidden collaborations