Time filter

Source Type

Périgny, France

Bernard E.,MINES ParisTech | Bernard E.,University Pierre and Marie Curie | Bernard E.,French Institute of Health and Medical Research | Jacob L.,University Claude Bernard Lyon 1 | And 5 more authors.
BMC Bioinformatics | Year: 2015

Background: Detecting and quantifying isoforms from RNA-seq data is an important but challenging task. The problem is often ill-posed, particularly at low coverage. One promising direction is to exploit several samples simultaneously. Results: We propose a new method for solving the isoform deconvolution problem jointly across several samples. We formulate a convex optimization problem that allows to share information between samples and that we solve efficiently. We demonstrate the benefits of combining several samples on simulated and real data, and show that our approach outperforms pooling strategies and methods based on integer programming. Conclusion: Our convex formulation to jointly detect and quantify isoforms from RNA-seq data of multiple related samples is a computationally efficient approach to leverage the hypotheses that some isoforms are likely to be present in several samples. The software and source code are available at http://cbio.ensmp.fr/flipflop. © 2015 Bernard et al. Source

Servant N.,University Pierre and Marie Curie | Servant N.,French Institute of Health and Medical Research | Servant N.,MINES ParisTech | Varoquaux N.,University Pierre and Marie Curie | And 19 more authors.
Genome Biology | Year: 2015

HiC-Pro is an optimized and flexible pipeline for processing Hi-C data from raw reads to normalized contact maps. HiC-Pro maps reads, detects valid ligation products, performs quality controls and generates intra- and inter-chromosomal contact maps. It includes a fast implementation of the iterative correction method and is based on a memory-efficient data format for Hi-C contact maps. In addition, HiC-Pro can use phased genotype data to build allele-specific contact maps. We applied HiC-Pro to different Hi-C datasets, demonstrating its ability to easily process large data in a reasonable time. Source code and documentation are available at http://github.com/nservant/HiC-Pro. © 2015 Servant et al. Source

Kuperstein I.,University Pierre and Marie Curie | Kuperstein I.,MINES ParisTech | Bonnet E.,University Pierre and Marie Curie | Bonnet E.,MINES ParisTech | And 25 more authors.
Oncogenesis | Year: 2015

Cancerogenesis is driven by mutations leading to aberrant functioning of a complex network of molecular interactions and simultaneously affecting multiple cellular functions. Therefore, the successful application of bioinformatics and systems biology methods for analysis of high-throughput data in cancer research heavily depends on availability of global and detailed reconstructions of signalling networks amenable for computational analysis. We present here the Atlas of Cancer Signalling Network (ACSN), an interactive and comprehensive map of molecular mechanisms implicated in cancer. The resource includes tools for map navigation, visualization and analysis of molecular data in the context of signalling network maps. Constructing and updating ACSN involves careful manual curation of molecular biology literature and participation of experts in the corresponding fields. The cancer-oriented content of ACSN is completely original and covers major mechanisms involved in cancer progression, including DNA repair, cell survival, apoptosis, cell cycle, EMT and cell motility. Cell signalling mechanisms are depicted in detail, together creating a seamless 'geographic-like' map of molecular interactions frequently deregulated in cancer. The map is browsable using NaviCell web interface using the Google Maps engine and semantic zooming principle. The associated web-blog provides a forum for commenting and curating the ACSN content. ACSN allows uploading heterogeneous omics data from users on top of the maps for visualization and performing functional analyses. We suggest several scenarios for ACSN application in cancer research, particularly for visualizing high-throughput data, starting from small interfering RNA-based screening results or mutation frequencies to innovative ways of exploring transcriptomes and phosphoproteomes. Integration and analysis of these data in the context of ACSN may help interpret their biological significance and formulate mechanistic hypotheses. ACSN may also support patient stratification, prediction of treatment response and resistance to cancer drugs, as well as design of novel treatment strategies. Source

Kuperstein I.,University of Paris Descartes | Kuperstein I.,French Institute of Health and Medical Research | Kuperstein I.,MINES ParisTech | Cohen D.P.A.,University of Paris Descartes | And 13 more authors.
BMC Systems Biology | Year: 2013

Background: Molecular biology knowledge can be formalized and systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist an increasing number of maps of molecular interactions containing detailed and step-wise description of various cell mechanisms. It is difficult to explore these large maps, to organize discussion of their content and to maintain them. Several efforts were recently made to combine these capabilities together in one environment, and NaviCell is one of them. Results: NaviCell is a web-based environment for exploiting large maps of molecular interactions, created in CellDesigner, allowing their easy exploration, curation and maintenance. It is characterized by a combination of three essential features: (1) efficient map browsing based on Google Maps; (2) semantic zooming for viewing different levels of details or of abstraction of the map and (3) integrated web-based blog for collecting community feedback. NaviCell can be easily used by experts in the field of molecular biology for studying molecular entities of interest in the context of signaling pathways and crosstalk between pathways within a global signaling network. NaviCell allows both exploration of detailed molecular mechanisms represented on the map and a more abstract view of the map up to a top-level modular representation. NaviCell greatly facilitates curation, maintenance and updating the comprehensive maps of molecular interactions in an interactive and user-friendly fashion due to an imbedded blogging system. Conclusions: NaviCell provides user-friendly exploration of large-scale maps of molecular interactions, thanks to Google Maps and WordPress interfaces, with which many users are already familiar. Semantic zooming which is used for navigating geographical maps is adopted for molecular maps in NaviCell, making any level of visualization readable. In addition, NaviCell provides a framework for community-based curation of maps. © 2013 Kuperstein et al.; licensee BioMed Central Ltd. Source

Discover hidden collaborations