Ecublens, Switzerland
Ecublens, Switzerland

Synova Capital is a private equity firm specialising in investments in UK growth companies. The firm manages capital on behalf of institutional investors and family offices and invests across five sectors: business and support services, financial services, software and information technology services, consumer brands and healthcare and education.Synova was founded in 2007 by its managing partners, David Menton and Philip Shapiro.Synova was awarded 'Young Firm of the Year' at The Private Equity Awards 2014, and is one of the finalists for ‘Private Equity Investor of the Year’ at the HealthInvestor Awards 2014.Clearwater Care was one of the finalists for ‘Specialist Care Provider of the Year’ at the HealthInvestor Awards 2013. Kinapse was ranked 55th in the 2013 Sunday Times Fast Track 100, and TLG Brands was ranked 30th in the 2012 Sunday Times International Track 200. Wikipedia.


Time filter

Source Type

The invention concerns a process for treating a workpiece, preferably for shaping a workpiece by ablating material, by a liquid jet guided laser beam. The process comprises the following steps: Production of a liquid jet by a nozzle; impinging the liquid jet on a reference surface allocated to the workpiece, whereby an intersection of the liquid jet with the reference surface defines a liquid jet-footprint; effecting a displacement between the liquid jet and the reference surface, whereby the liquid jet- footprint evolves to a trace along a trajectory associated with the trace during the time frame, wherein the trace covers a trace-area; irradiating the workpiece at least during part of the time frame with a laser beam coupled into the liquid jet, preferably for ablating material such that the trace has at least one overlap-area, wherein each of the at least one overlap-areas is defined by an associated common area of an associated second length-section of the trace and an associated first length-section of the trace and wherein the workpiece is irradiated by the laser beam along at least one of the length-sections. It concerns further a computerized numerical control (CNC) program for controlling a liquid jet guided laser machining device and a computer readable medium containing such a CNC program. Further, it contains a computer program for generating the above mentioned CNC program. Finally the invention concerns a liquid jet guided laser machining device to perform the above mentioned process.


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: FoF-ICT-2011.7.1 | Award Amount: 5.71M | Year: 2012

Materials processing is by far the highest value application of lasers, and Europe is a power-base for this technology. HALO will develop the next generation of materials processing lasers, which will have adaptable beams actively optimised for specific processes. They will produce better processing results exploiting the as yet unused potential of:\nFibre guided high power CW lasers for metal sheet cutting (addressing the largest market share of laser machines)\nPico-second lasers operating at high average powers\nPulsed lasers emitting at new wavelengths for precision cutting of thin metal sheets and brittle materials like glass (addressing products of consumer markets such as high end phones or PC systems).\n\nThis will require a range of new technologies: HALO will develop the necessary elements to bring about a step change in lasers for materials processing:\n\nComponents tailored for adaptable beams and new beam shapes\nNew approaches to adaptable hollow beam sources at new wavelengths\nTechniques for beam shaping and forming\nProcess optimisation for adaptable beam processing using IT-based meta-models\nAdaptable jet-assisted laser cutting.\n\nThe project addresses these two most important markets of laser processing and will be demonstrated in specific industrial applications by important end users:\n\nSheet metal cutting (sheet thickness 1 to 25 mm)\nPrecision cutting of glass and thin metal sheets (<1 mm).\n\nThe HALO project consortium includes market leading laser component and system manufacturers, world renowned researchers, beta end users of the system manufacturers and one end user representing excellence in EU SMEs.


News Article | November 7, 2016
Site: www.prnewswire.co.uk

As aerospace and industrial gas turbine manufacturers strive to improve performance, the need for high-quality hole drilling of turbine engine components is rapidly becoming mission-critical. To address this need, Synova and Makino are joining forces to offer a unique solution, the HybridCell, which combines the power of Synova's Laser MicroJet® (LMJ) with Makino's leading edge EDM capabilities. It is a fully automated, manufacturing-ready, work cell that can handle a wide range of hole-drilling applications. The HybridCell consist of a MCS 500 cutting system, along with Makino's EDBV EDM hole-drilling machine. "Combining Synova's MCS 500 Laser MicroJet machine with Makino's well established hi-speed EDBV machines enables our customers to drill holes in components already pre-coated with a thermal barrier, as opposed to post-coating drilling processes currently being used. This approach significantly simplifies the overall process, improves quality and reduces overall manufacturing", says Dr Bernold Richerzhagen, Synova Founder and CEO. The Laser MicroJet system is used to cut diffuser shapes in the coating layer and drilling metering holes, while the EDBV is used to drill deep through holes. The machine tasks are easily balanced between the HybridCell machines, ensuring an optimum throughput. An innovative solution is provided to handle difficult "non-line of sight" holes on the EDM machine. A sophisticated data transfer scheme is also part of the cell, enabling high accuracy hole-drilling of complete components. All EDM drilling on EDBV machines is performed while being fully submerged under water. This enables faster machining speeds, improves part quality, and creates more stable and consistent conditions during cavity wall penetration. Speeds up to 10 times that of conventional technologies are achieved. Join us at JIMTOF 2016 to learn more about the technology. Visit Synova in the East Hall 2 at E2015. Synova S.A., headquartered in Lausanne, Switzerland, manufactures leading-edge laser cutting systems that incorporate the proprietary water jet guided laser technology (Laser MicroJet®) in a true industrial CNC platform. Customers benefit from significant yield and quality improvements in cutting, as well as enhanced capabilities for micro-machining a wide range of materials. For more information, contact us at sales@synova.ch or visit our website at http://www.synova.ch. About Makino  A world leader in advanced CNC machining centers, Makino is committed to providing high-performance, leading-edge machining technologies and innovative engineered process solutions that enable manufacturers to focus on making what matters. Makino offers a wide range of high-precision metal-cutting and EDM machinery, including horizontal machining centers, vertical machining centers, 5-axis machining centers, graphite machining centers, and wire and sinker EDMs. Visit http://www.makino.co.jp/en/


News Article | November 7, 2016
Site: www.prnewswire.com

LAUSANNE, Switzerland, November 7, 2016 /PRNewswire/ -- A hole-drilling solution combining Synova's Laser MicroJet® and Makino's EDM machines As aerospace and industrial gas turbine manufacturers strive to improve performance, the need for high-quality hole drilling of turbine...


An adipose-derived stem cell (ASC), regenerative cell and/or regenerative factor processing system including a tissue extraction device for extracting raw tissue, such as adipose tissue, from a patient, an ASC, regenerative cell and/or regenerative factor isolator, and an implantation device for re-introducing the isolated ASCs, regenerative cells and/or regenerative factors into the patient.


An apparatus (100; 200) for processing material by means of laser is claimed. Said apparatus comprises a liquid supply chamber (106a) for conveying the liquid to a nozzle (108), where the nozzle (108) forms the liquid jet (106), so that the liquid jet (106) acts as a wave guide for the laser. Further said apparatus comprises an entry window (109) in the liquid supply chamber (106a) for the laser and a focussing unit for focussing the laser through the entry window (109) into the nozzle (108). In order to improve the flexibility of the apparatus (100; 200) concerning processing material, two laser beams are combined with a beam combiner (103; 203) and coupled into the liquid jet (106). Additionally the invention relates to a method for material processing and to a method of aligning said apparatus (100; 200).


A process for providing a protection against damages in a machine head, wherein the machine head launches a transparent liquid jet guided laser beam LB by means of a nozzle 3 along an optical axis for treating a work piece is claimed. The process comprises the following steps: First a blind steel plate (protection plate 20) is fixed to a front of a protection chamber (10) prior to the liquid water jet (WJ). Then the transparent liquid jet (WJ) guided laser beam (LB) is stared, which impinges on the blind steel plate (20) blank and drills a transit-hole into the blind steel plate blank. The transit-hole (23) has a size which substantially corresponds to a cross-section of the laser beam (LB) guiding transparent liquid jet (WJ). The steel plate (20) with the transit-hole (23) provides a protection plate (20) having the transit-hole (23) precisely arranged on the optical axis. Therefore no further alignment is required. Further an apparatus for treating a workpiece by means of a laser beam (LB) which is guided in a transparent liquid jet (WJ) is claimed. The apparatus comprises a laser head with a coupling unit (CU) for producing a liquid jet (WJ) guided laser beam (LB), a protection chamber (10) mounted on the output (5) of the coupling unit (CU) and a protection plate (20) replaceable fixed to the first chamber (10) and mounted at a distance from the outlet (15) of the first chamber (10) and having a hole (23) for passage of the laser beam (LB) guiding transparent liquid jet (WJ) and protecting the outlet (15) of the first chamber (10) from debris sputtered from the treated workpiece.


Trademark
Synova | Date: 2013-06-15

Biological tissue, namely, stem cells for use in scientific and medical research; Cells for scientific, laboratory or medical research; Stem cells for research or scientific purposes. Cells for medical or clinical use; Stem cells for medical purposes. Medical and scientific research in the field of stem cell therapy; Medical and scientific research information in the field of stem cell therapy; Medical laboratories; Providing scientific information in the field of stem cell therapy; Scientific research for medical purposes in the field of stem cell therapy. Medical clinics; Medical consultations; Medical services in the field of stem cell therapy; Medical services, namely,stem cell therapy procedures.


News Article | November 16, 2016
Site: www.prnewswire.com

LOS ANGELES, Nov. 16, 2016 /PRNewswire/ -- Caitlin Sparks, General Partner at FullCycle Energy LP, is a recognized expert in clean energy development; environmental assets, markets, and policy; resource recovery and global sustainability initiatives.   "Caitlin helped launch a benchma...

Loading Synova collaborators
Loading Synova collaborators