Kowloon City, Hong Kong
Kowloon City, Hong Kong

Synaptics develops human interface solutions for consumer electronics companies, such as Acer, Apple Inc., Asus, Dell, Gateway, HP, HTC, Lenovo, LG, Logitech, Nokia, Samsung, Sony, Sony Ericsson, and Toshiba. The products include touchpads and touchscreens for devices including notebook PCs, PC peripherals, mobile phones, digital music players, and remote controls. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

It will be understood by those skilled in the art that there is disclosed in the present application a biometric sensor that may comprise a plurality of a first type of signal traces formed on a first surface of a first layer of a multi-layer laminate package; at least one trace of a second type, formed on a second surface of the first layer or on a first surface of a second layer of the multi-layer laminate package; and connection vias in at least the first layer electrically connecting the signal traces of the first type or the signal traces of the second type to respective circuitry of the respective first or second type contained in an integrated circuit physically and electrically connected to one of the first layer, the second layer or a third layer of the multi-layer laminate package.


Patent
Synaptics | Date: 2017-01-24

A method for initiating fingerprint capture in an electronic device is described. The device includes a touch screen with a sensing region, a touch controller, a fingerprint controller, and a host. The device is placed in a low power doze mode where the fingerprint controller is in a low power state and the device scans for an object proximate to the sensing region. When an object is proximate to the sensing region, the device executes a validation mode to determine whether the object is a fingerprint. When a fingerprint is detected, the device sends a wake up signal to the fingerprint controller and places the fingerprint controller in a high power mode. One or more fingerprint images are then captured.


Patent
Synaptics | Date: 2017-04-11

A method. The method may include obtaining force information regarding an input force applied by an input object to a sensing region of an input device. The method may include determining, using the force information, that the input force exceeds a first force threshold. The method may include determining, using the force information, whether the input force exceeds a second force threshold. The method may include obtaining positional information for an input object in the sensing region of the input device. The method may include determining, using the positional information, that a change in position of the input object is less than a distance threshold when the input force exceeds the second force threshold. The method may include performing an interface action within a graphical user interface in response to determining that the input force decreases below at least the second force threshold.


Patent
Synaptics | Date: 2017-02-13

A fingerprint sensing module includes a sensor substrate having a sensing side and a circuit side, an image sensor including conductive traces on the circuit side of the sensor substrate, and a sensor circuit including at least one integrated circuit mounted on the circuit side of the sensor substrate and electrically connected to the image sensor. The sensor substrate may be a flexible substrate. The module may include a velocity sensor on the sensor substrate or on a separate substrate. The module may further include a rigid substrate, and the sensor substrate may be affixed to the rigid substrate.


A keyboard including a plurality of key assemblies configured to be pressed by an input object. A subset of the plurality of key assemblies each includes a key cap and a first electrode pair underneath the key cap and configured to detect key motion in response to downward force applied by the input object. The key cap also includes a second electrode pair disposed underneath the key cap and configured to detect positional information about the input object interacting with the key cap.


A processing system for an input device having a sensing region overlapping an input surface and an array of sensor electrodes configured to form a plurality of proximity pixels and a plurality of force pixels. The processing system is configured to: determine a proximity image indicative of positional information for input objects; determine a force image indicative of local deflection of the input surface in response to force applied by the input objects; determine a respective group of proximity pixels from the proximity image corresponding to each input object; determine a respective group of force pixels from the force image corresponding to each determined group of proximity pixels; determine the position of each input object based on the determined groups of proximity pixels; and determine the force associated with each input object based on the determined groups of force pixels.


Patent
Synaptics | Date: 2017-01-20

A processing system for a capacitive sensing device includes a sensor module and a determination module. The sensor module is coupled to transmitter electrodes and receiver electrodes. The sensor module is configured to transmit transmitter signals with the transmitter electrodes and receive resulting signals with the receiver electrodes. The resulting signals include effects corresponding to the transmitter signals. The determination module is configured to determine response values from the resulting signals, and determine a first adjusted response value by applying a negative multiplier to a first response value of the response values. The first response value is a negative value. The determination module is further configured to determine positional information for a first input object based on at least one of the first adjusted response value and a second response value of the response values, and report the positional information. The second response value is a positive response value.


Patent
Synaptics | Date: 2017-03-07

A touch sensor device is provided that uses a flexible circuit substrate to provide an improved input device. Specifically, the present invention uses a touch sensor controller affixed to the flexible circuit substrate, which is coupled to a sensor component to provide a flexible, reliable and cost effective touch sensor suitable for a wide variety of applications. In one embodiment the touch sensor uses a flexible circuit substrate that provides relatively high temperature resistance. This allows the touch sensor controller to be affixed using reliable techniques, such as various types of soldering. The sensor component can comprise a relatively low-temperature-resistant substrate that can provide a cost effective solution. Taken together, this embodiment of the touch sensor provides reliability and flexibility at relatively low cost.


Devices, systems, and methods are provided for coordinating the interaction between a touch screen controller and a display controller in an electronic device of the type including a host processor, a touch screen controller configured to acquire capacitive measurements from a touch screen, and a display controller configured to update a display at a refresh frequency and phase. The method includes: sharing a synchronization signal between the display controller and the host processor, the synchronization signal indicative of the refresh frequency and phase; polling the touch screen controller, by the host processor, based on the synchronization signal; and in response to the polling, acquiring the capacitive measurements by the touch screen controller at a sampling rate and phase determined by the refresh frequency and phase.


Patent
Synaptics | Date: 2017-01-09

Embodiments of the invention generally provide an input device with display screens that periodically update (refresh) the screen by selectively driving common electrodes corresponding to pixels in a display line. In general, the input devices drive each electrode until each display line (and each pixel) of a display frame is updated. In addition to updating the display, the input device may perform capacitive sensing using the display screen as a proximity sensing area. To do this, the input device may interleave periods of capacitive sensing between periods of updating the display based on a display frame. For example, the input device may update the first half of display lines of the display screen, pause display updating, perform capacitive sensing, and finish updating the rest of the display lines. Further still, the input device may use common electrodes for both updating the display and performing capacitive sensing.

Loading Synaptics collaborators
Loading Synaptics collaborators