Time filter

Source Type

Marzinelli E.M.,University of New South Wales | Marzinelli E.M.,Sydney Institute of Marine Science SIMS | Campbell A.H.,University of New South Wales | Campbell A.H.,Sydney Institute of Marine Science SIMS | And 12 more authors.
Environmental microbiology | Year: 2015

Interactions between hosts and associated microbial communities can fundamentally shape the development and ecology of 'holobionts', from humans to marine habitat-forming organisms such as seaweeds. In marine systems, planktonic microbial community structure is mainly driven by geography and related environmental factors, but the large-scale drivers of host-associated microbial communities are largely unknown. Using 16S-rRNA gene sequencing, we characterized 260 seaweed-associated bacterial and archaeal communities on the kelp Ecklonia radiata from three biogeographical provinces spanning 10° of latitude and 35° of longitude across the Australian continent. These phylogenetically and taxonomically diverse communities were more strongly and consistently associated with host condition than geographical location or environmental variables, and a 'core' microbial community characteristic of healthy kelps appears to be lost when hosts become stressed. Microbial communities on stressed individuals were more similar to each other among locations than those on healthy hosts. In contrast to biogeographical patterns of planktonic marine microbial communities, host traits emerge as critical determinants of associated microbial community structure of these holobionts, even at a continental scale. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd. Source

Marzinelli E.M.,Sydney Institute of Marine Science SIMS | Marzinelli E.M.,University of New South Wales | Campbell A.H.,Sydney Institute of Marine Science SIMS | Campbell A.H.,University of New South Wales | And 7 more authors.
Journal of Applied Phycology | Year: 2014

Degradation and loss of natural habitats due to human activities is a main cause of global biodiversity loss. In temperate systems, seaweeds are a main habitat former and support extremely diverse communities, including many economically important species. Coastal urbanisation is, however, causing significant declines of key habitat-forming seaweeds. To develop successful management strategies such as seaweed habitat restoration, it is necessary to first determine what additional ecosystem values are likely to be added through restoration and to provide baseline data against which goals can be established and success can be measured. The habitat-forming fucoid Phyllospora comosa was once common on shallow subtidal reefs around Sydney, Australia’s largest city, but disappeared in the 1980s, coincident with heavy sewage outfall discharges. To provide the baseline data necessary for restoring and managing Phyllospora in areas from where it has disappeared, we quantified the community composition and abundance of fish and large invertebrates (abalone and sea urchins) in healthy Phyllospora habitats and compared them to those in Ecklonia radiata (the other major habitat-forming kelp in the region) as well as other common shallow subtidal habitats. Fish assemblage structure was similar between Phyllospora vs Ecklonia beds, but Phyllospora supported much greater numbers of abalone and urchins than any other habitat. This suggests that, in terms of some components of the biodiversity it supports, Phyllospora is functionally unique and not a redundant species. Restoring this seaweed will, therefore, also contribute to biodiversity rehabilitation by restoring unique faunal assemblages that are supported by Phyllospora, including economically important species. © 2013, Springer Science+Business Media Dordrecht. Source

Discover hidden collaborations