Time filter

Source Type

Epalinges, Switzerland

Ahlgrim C.,Albert Ludwigs University of Freiburg | Pottgiesser T.,Albert Ludwigs University of Freiburg | Robinson N.,Swiss Laboratory for Doping Analysis | Sottas P.E.,Swiss Laboratory for Doping Analysis | And 2 more authors.
International Journal of Laboratory Hematology | Year: 2010

Haemoglobin (Hb) and haematocrit (Hct) are measured as indirect markers of doping in athletes. We studied the effect of posture on these parameters in a typical antidoping setting. Venous blood samples were obtained from nine endurance athletes (six males, three females) and nine control subjects (six males, three females) immediately and after 5, 10, 15, 20 and 30 min after having adopted a seated position from normal daily activity. Hb (CV 0.72%) and Hct (CV 0.87%) were determined using an automated cell counter, plasma volume changes were calculated. Differences between the time points, gender and groups were calculated using a mixed-model procedure. Significant changes were observed in the first 10 min after sitting down but no further changes were noted between 10 and 30 min. Mean directional change for Hb and Hct between 0 min and the average of the period from 10 to 30 min was -2.4% (-0.35 g/dl) for Hb and -2.7% (-1.2%) for Hct. Plasma volume increased accordingly. Neither group nor gender had significant effects. Under typical conditions encountered during blood testing in doping control, a period of 10 min in a seated position is sufficient for the vascular volumes to re-equilibrate and to adapt to the new posture. © 2010 Blackwell Publishing Ltd.

Piper T.,Swiss Laboratory for Doping Analysis | Piper T.,German Sport University Cologne | Fussholler G.,German Sport University Cologne | Emery C.,Swiss Laboratory for Doping Analysis | And 2 more authors.
Drug Testing and Analysis | Year: 2012

The aromatase inhibitor formestane (4-hydroxy-androst-4-ene-3,17-dione, F) is prohibited in sports by the World Anti-Doping Agency (WADA). F possesses only weak androgenic properties and is presumed to be employed in order to suppress estrogen production during the illicit intake of anabolic steroids by athletes. Former studies additionally showed that F is an endogenous steroid produced in low amounts. According to the regulations of WADA, urinary concentrations above 100ng/ml are assumed to be due to ingestion of F. To distinguish between endogenous or exogenous sources of urinary F, isotope ratio mass spectrometry (IRMS) is the method of choice. Therefore, a method to determine the carbon isotope ratio (CIR) of F in urine samples was developed and validated. Routine samples (n=42) showing concentrations of F above 5ng/ml were investigated and enabled elucidation of the CIR of endogenous F and subsequent the calculation of a reference limit. A reference population encompassing n=90 males and females was investigated regarding endogenous concentrations of F. An excretion study with one male volunteer was conducted to test and validate the developed method and to identify possible impact of F administration on other endogenous steroids. By CIR determination of F it is clearly possible to elucidate its endogenous or exogenous source. Taking into account the CIR of other target analytes like testosterone, a differentiation between F and androstenedione intake is possible. In 2011, the first exogenous F below the WADA threshold could be detected by means of the developed IRMS method. © 2012 John Wiley & Sons, Ltd.

Discover hidden collaborations