Birmensdorf, Switzerland
Birmensdorf, Switzerland

Time filter

Source Type

Turowski J.M.,Swiss Federal Institute of forest
Journal of Geophysical Research: Earth Surface | Year: 2011

The Hamamori distribution is frequently used to describe the variability of bed load transport rates in bed form-dominated environments. However, the original derivation contains several incorrect steps. Here a corrected and generalized derivation is presented. It is shown that Hamamori's original distribution function arises if the underlying assumptions are adapted slightly. Two formalisms are presented to obtain probability distributions of instantaneous bed load transport rates from growth functions of ripples and from the distribution of ripple heights. Six distribution functions, among them the exponential distribution, the Hamamori distribution, and the gamma distribution, are compared to two laboratory data sets, one for gravel and one for sand transport, and to field data from a sand-bed river. For the gravel bed laboratory measurements, the Hamamori distribution gives a good description of the data for intermediate transport rates, while the gamma distribution performs best overall. For the sand-bed laboratory data, the exponential distribution shows the best performance. A distribution function derived from Rayleigh-distributed ripple heights performs best for the field data. Copyright 2011 by the American Geophysical Union.

Bryner S.F.,Swiss Federal Institute of forest | Rigling D.,Swiss Federal Institute of forest
American Naturalist | Year: 2011

The outcome of host-parasite interactions may depend not only on the genotypes of the species involved but also on environmental factors.We used the fungus Cryphonectria parasitica, the causal agent of chestnut blight, and its hyperparasitic virus, Cryphonectria hypovirus-1 (CHV1), to test for genotype-by-genotype-byenvironment interactions in a host-parasite system. In C. parasitica, infection with CHV1 induces a hypovirulent phenotype with reduced virulence toward the chestnut tree (Castanea spp.) and thus controls chestnut blight in many European regions. In contrast, uninfected virulent C. parasitica have nearly eradicated the American chestnut in North America. We applied a full factorial design and assessed the fungal growth and sporulation of four C. parasitica strains, uninfected and infected with each of the four known CHV1 subtypes, at 12°, 18°, 24°, and 30°C. We found a significant (P ≤.0001) genotype-by-genotype-by-environment interaction, demonstrating the potential for a selection mosaic. As a consequence, different host and parasite genotypes would be selected under different climatic conditions, affecting the coevolutionary dynamics of the host-parasite interaction and the course of chestnut blight epidemics. Genotypeby- genotype-by-environment interactions are essential to take into account when designing biological control strategies. © 2010 by The University of Chicago.

Ricotta C.,University of Rome La Sapienza | Moretti M.,Swiss Federal Institute of forest
Oecologia | Year: 2011

Assessing the effects of environmental constraints on community structure often relies on methods that consider changes in species functional traits in response to environmental processes. Various indices have been proposed to measure relevant aspects of community trait composition from different viewpoints and perspectives. Among these, the 'community-weighted mean trait value' (CWM) and the Rao coefficient have been widely used in ecological research for summarizing different facets of functional composition and diversity. Analyzing changes in functional diversity of bee communities along a post-fire successional gradient in southern Switzerland we show that these two measures may be used to describe two complementary aspects of community structure, such as the mean and the dispersion of functional traits within a given species assemblage. While CWM can be adequately used to summarize shifts in mean trait values within communities due to environmental selection for certain functional traits, the Rao coefficient can be effectively applied to analyze patterns of trait convergence or divergence compared to a random expectation. © 2011 Springer-Verlag.

Egli S.,Swiss Federal Institute of forest
Annals of Forest Science | Year: 2011

• Introduction: Fruit-body production of mushrooms is not well understood to date as many factors interact with mushroom growth in nature. Weather conditions play a key role, but they do not completely explain the growth and productivity of wild mushrooms. Mycorrhizal fungi depend on photosynthetically fixed carbon produced by their associated trees, and the physiological state of host trees may well drive the growth of these fungi. We raise the question of whether mycorrhizal fungi can be used as indicators for tree health. • Discussion: In the 1980s, a decline in the species richness and abundance of ectomycorrhizal species was observed in Europe, which was then seen as reflecting the degree of forest dieback. An analysis of the results of a long-term study over 32 years in the fungus reserve La Chanéaz confirms this decline: since 1975, the mycorrhizal species have considerably decreased in abundance in relation to the other species. We discuss potential causes of this development and raise questions about a possible relationship between a decrease in mycorrhizal fungi and the health of the associated forest trees. • Conclusion: We do not yet know enough about forest mushrooms to be able to use them as bio-indicators of tree health. More research is needed, especially about the functional significance of ectomycorrhizal fungi on a species level. © The Author(s) 2011.

Tobias S.,Swiss Federal Institute of forest
Integrated Environmental Assessment and Management | Year: 2013

This article presents a literature review that explores the challenges for planning in urban regions in connection with the preservation of ecosystem services. It further presents some best practice examples for meeting these challenges. The demand for the provision of ecosystem services within urban regions changed during the transition from a largely agrarian society to an industrial society and, most recently, to a service society. Although in the past, provisioning services such as food production or the provision of raw material were decisive for urban development, today cultural services, e.g., clear views or nearby recreation areas, have become increasingly important. According to the literature, soil sealing is the greatest threat urbanization poses toward ecosystem services, as it compromises all of them. Spatially extensive cities with a high building density particularly inhibit regulating services like the regulation of temperature or water surface runoff. Conversely, scattered settlement patterns may lead to very small remnants of open space that cannot reasonably serve as natural habitat, agricultural land, or recreation area. The challenges for planning in urban regions are: 1) specifying regulations that define outer limits to the development of each settlement unit, 2) comprehensive planning with focal points for development, and limiting access and development at other places, and 3) compensating for new soil sealing by restoring nearby sealed areas. The article presents 3 best-practice examples that support these principles: designating areas with a particular soil quality that should not be built over, offering incentives for corporate planning in urban regions, and restoring a country road in connection with a motorway construction. © 2013 SETAC.

Steiner T.,Swiss Federal Institute of forest
Medicine and science in sports and exercise | Year: 2011

It is unclear if hemoglobin mass (Hbmass) and red cell volume (RCV) increase in endurance athletes with several years of endurance training from adolescence to adulthood. The aim of this study, therefore, was to determine with a controlled cross-sectional approach whether endurance athletes at the ages of 16, 21, and 28 yr are characterized by different Hbmass, RCV, plasma volume (PV), and blood volume (BV). BV parameters (CO rebreathing), VO(2max) and other blood, iron, training, and anthropometric parameters were measured in three endurance athlete groups AG16 (n = 14), AG21 (n = 14), and AG28 (n = 16) as well as in three age-matched control groups (<2 h endurance training per week): CG16 (n = 16), CG21 (n = 15), and CG28 (n = 16). In AG16, body weight-related Hbmass (12.4 ± 0.7 g·kg(-1)), RCV, BV, and VO(2max) (66.1 ± 3.8 mL·kg·(-1)min(-1)) were lower (P < 0.001) than those in AG21 (14.2 ± 1.1 g·kg(-1), 72.9 ± 3.6 mL·kg·(-1)min(-1)) and AG28 (14.6 ± 1.1 g·kg(-1), 73.4 ± 6.0 mL·kg·(-1)min(-1)). Results for these parameters did not differ between AG21 and AG28 and among the control groups. VO(2max), PV, and BV were higher for AG16 than for CG16 (12.0 ± 1.0 g·kg(-1), 58.9 ± 5.0 mL·kg·(-1)min(-1)) but not Hbmass and RCV. Our results suggest that endurance training has major effects on Hbmass and RCV from ages 16 to 21 yr, although there is no further increase from ages 21 to 28 yr in top endurance athletes. On the basis of our findings, an early detection of the aptitude for endurance sports at age 16 yr, solely based on levels of Hbmass, does not seem to be possible.

Manel S.,Aix - Marseille University | Manel S.,CIRAD - Agricultural Research for Development | Holderegger R.,Swiss Federal Institute of forest | Holderegger R.,ETH Zurich
Trends in Ecology and Evolution | Year: 2013

Landscape genetics is now ten years old. It has stimulated research into the effect of landscapes on evolutionary processes. This review describes the main topics that have contributed most significantly to the progress of landscape genetics, such as conceptual and methodological developments in spatial and temporal patterns of gene flow, seascape genetics, and landscape genomics. We then suggest perspectives for the future, investigating what the field will contribute to the assessment of global change and conservation in general and to the management of tropical and urban areas in particular. To address these urgent topics, future work in landscape genetics should focus on a better integration of neutral and adaptive genetic variation and their interplay with species distribution and the environment. © 2013 Elsevier Ltd.

Rickenmann D.,Swiss Federal Institute of forest | Recking A.,IRSTEA
Water Resources Research | Year: 2011

A data set of 2890 field measurements was used to test the ability of several conventional flow resistance equations to predict mean flow velocity in gravel bed rivers when used with no calibration. The tests were performed using both flow depth and discharge as input since discharge may be a more reliable measure of flow conditions in shallow flows. Generally better predictions are obtained when using flow discharge as input. The results indicate that the Manning-Strickler and the Keulegan equations show considerable disagreement with observed flow velocities for flow depths smaller than 10 times the characteristic grain diameter. Most equations show some systematic deviation for small relative flow depth. The use of new definitions for dimensionless variables in terms of nondimensional hydraulic geometry equations allows the development of a new flow resistance equation. The best overall performance is obtained by the Ferguson approach, which combines two power law flow resistance equations that are different for deep and shallow flows. To use this approach with flow discharge as input, a logarithmic matching equation in terms of the new dimensionless variables is proposed. For the domains of intermediate and large-scale roughness, the field data indicate a considerable increase in flow resistance as compared with the domain of small-scale roughness. The Ferguson approach is used to discuss the importance of flow resistance partitioning for bed load transport calculations at flow conditions with intermediate- and large-scale roughness in natural gravel, cobble, and boulder bed streams. Copyright 2011 by the American Geophysical Union.

Gavazov K.S.,Swiss Federal Institute of forest
Plant and Soil | Year: 2010

Climatic changes resulting from anthropogenic activities over the passed century are repeatedly reported to alter the functioning of pristine ecosystems worldwide, and especially those in cold biomes. Available literature on the process of plant leaf litter decomposition in the temperate Alpine zone is reviewed here, with emphasis on both direct and indirect effects of climate change phenomena on rates of litter decay. Weighing the impact of biotic and abiotic processes governing litter mass loss, it appears that an immediate intensification of decomposition rates due to temperature rise can be retarded by decreased soil moisture, insufficient snow cover insulation, and shrub expansion in the Alpine zone. This tentative conclusion, remains speculative unless empirically tested, but it has profound implications for understanding the biogeochemical cycling in the Alpine vegetation belt, and its potential role as a buffering mechanism to climate change. © 2010 Springer Science+Business Media B.V.

Normand S.,Swiss Federal Institute of forest
Philosophical transactions of the Royal Society of London. Series B, Biological sciences | Year: 2013

Warming-induced expansion of trees and shrubs into tundra vegetation will strongly impact Arctic ecosystems. Today, a small subset of the boreal woody flora found during certain Plio-Pleistocene warm periods inhabits Greenland. Whether the twenty-first century warming will induce a re-colonization of a rich woody flora depends on the roles of climate and migration limitations in shaping species ranges. Using potential treeline and climatic niche modelling, we project shifts in areas climatically suitable for tree growth and 56 Greenlandic, North American and European tree and shrub species from the Last Glacial Maximum through the present and into the future. In combination with observed tree plantings, our modelling highlights that a majority of the non-native species find climatically suitable conditions in certain parts of Greenland today, even in areas harbouring no native trees. Analyses of analogous climates indicate that these conditions are widespread outside Greenland, thus increasing the likelihood of woody invasions. Nonetheless, we find a substantial migration lag for Greenland's current and future woody flora. In conclusion, the projected climatic scope for future expansions is strongly limited by dispersal, soil development and other disequilibrium dynamics, with plantings and unintentional seed dispersal by humans having potentially large impacts on spread rates.

Loading Swiss Federal Institute of forest collaborators
Loading Swiss Federal Institute of forest collaborators