Time filter

Source Type

Otwock, Poland

Kaminska D.,Jagiellonian University | Gajos A.,Jagiellonian University | Czerwinski E.,Jagiellonian University | Bednarski T.,Jagiellonian University | And 25 more authors.
Nukleonika | Year: 2015

In this paper, we present prospects for using the Jagiellonian positron emission tomograph (J-PET) detector to search for discrete symmetries violations in a purely leptonic system of the positronium atom. We discuss tests of CP and CPT symmetries by means of ortho-positronium decays into three photons. No zero expectation values for chosen correlations between ortho-positronium spin and momentum vectors of photons would imply the existence of physics phenomena beyond the standard model. Previous measurements resulted in violation amplitude parameters for CP and CPT symmetries consistent with zero, with an uncertainty of about 10-3. The J-PET detector allows to determine those values with better precision, thanks to the unique time and angular resolution combined with a high geometrical acceptance. Achieving the aforementioned is possible because of the application of polymer scintillators instead of crystals as detectors of annihilation quanta.

Moskal P.,Jagiellonian University | Rundel O.,Jagiellonian University | Alfs D.,Jagiellonian University | Bednarski T.,Jagiellonian University | And 28 more authors.
Physics in Medicine and Biology | Year: 2016

Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence resolving time (CRT) of 0.266 ns. The achieved resolution is almost by a factor of two better with respect to the current TOF-PET detectors and it can still be improved since, as it is shown in this article, the intrinsic limit of time resolution for the determination of time of the interaction of 0.511 MeV gamma quanta in plastic scintillators is much lower. As the major point of the article, a method allowing to record timestamps of several photons, at two ends of the scintillator strip, by means of matrix of silicon photomultipliers (SiPM) is introduced. As a result of simulations, conducted with the number of SiPM varying from 4 to 42, it is shown that the improvement of timing resolution saturates with the growing number of photomultipliers, and that the 2 × 5 configuration at two ends allowing to read twenty timestamps, constitutes an optimal solution. The conducted simulations accounted for the emission time distribution, photon transport and absorption inside the scintillator, as well as quantum efficiency and transit time spread of photosensors, and were checked based on the experimental results. Application of the 2 × 5 matrix of SiPM allows for achieving the coincidence resolving time in positron emission tomography of ≈ 0.170 ns for 15 cm axial field-of-view (AFOV) and ≈0.365 ns for 100 cm AFOV. The results open perspectives for construction of a cost-effective TOFPET scanner with significantly better TOF resolution and larger AFOV with respect to the current TOF-PET modalities. © 2016 Institute of Physics and Engineering in Medicine.

Kubicz E.,Jagiellonian University | Jasinska B.,Maria Curie Sklodowska University | Zgardzinska B.,Maria Curie Sklodowska University | Bednarski T.,Jagiellonian University | And 27 more authors.
Nukleonika | Year: 2015

Results of positron annihilation lifetime spectroscopy (PALS) and microscopic studies on simple microorganisms, brewing yeasts, are presented. Lifetime of ortho-positronium (o-Ps) were found to change from 2.4 to 2.9 ns (longer-lived component) for lyophilized and aqueous yeasts, respectively. Also hygroscopicity of yeasts in time was examined, allowing to check how water - the main component of the cell - affects PALS parameters, thus lifetime of o-Ps were found to change from 1.2 to 1.4 ns (shorter-lived component) for the dried yeasts. The time sufficient to hydrate the cells was found below 10 hours. In the presence of liquid water, an indication of reorganization of yeast in the molecular scale was observed. Microscopic images of the lyophilized, dried, and wet yeasts with best possible resolution were obtained using inverted microscopy (IM) and environmental scanning electron microscopy (ESEM) methods. As a result, visible changes to the surface of the cell me mbrane were observed in ESEM images.

Wieczorek A.,Jagiellonian University | Wieczorek A.,Polish Academy of Sciences | Zgardzinska B.,Maria Curie Sklodowska University | Jasinska B.,Maria Curie Sklodowska University | And 26 more authors.
Nukleonika | Year: 2015

The polystyrene doped with 2,5-diphenyloxazole as a primary fluor and 2-(4-styrylphenyl)benzoxazole as a wavelength shifter prepared as a plastic scintillator was investigated using positronium probe in wide range of temperatures from 123 to 423 K. Three structural transitions at 260, 283, and 370 K were found in the material. In the o-Ps intensity dependence on temperature, the significant hysteresis is observed. Heated to 370 K, the material exhibits the o-Ps intensity variations in time.

Sharma N.G.,Jagiellonian University | Silarski M.,Jagiellonian University | Bednarski T.,Jagiellonian University | Bialas P.,Jagiellonian University | And 25 more authors.
Nukleonika | Year: 2015

The J-PET detector being developed at the Jagiellonian University is a positron emission tomograph composed of the long strips of polymer scintillators. At the same time, it is a detector system that will be used for studies of the decays of positronium atoms. The shape of photomultiplier signals depends on the hit time and hit position of the gamma quantum. In order to take advantage of this fact, a dedicated sampling front-end electronics that enables to sample signals in voltage domain with the time precision of about 20 ps and novel reconstruction method based on the comparison of examined signal with the model signals stored in the library has been developed. As a measure of the similarity, we use the Mahalanobis distance. The achievable position and time resolution depend on the number and values of the threshold levels at which the signal is sampled. A reconstruction method as well as preliminary results are presented and discussed.

Discover hidden collaborations