Swerea SWECAST AB

Jönköping, Sweden

Swerea SWECAST AB

Jönköping, Sweden

Time filter

Source Type

Mardan N.,Linköping University | Klahr R.,Swerea SWECAST AB | Karlsson M.,Linköping University
Proceedings of the 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2011 | Year: 2011

In recent years, there has been a worldwide focus on the issue of energy because of increased energy prices and the threat of increasing global warming. Furthermore, industries are facing greater competition as a result of increasing globalisation, which is forcing companies to reduce their expenses. Reducing the use of energy is therefore an essential task for the future as it has a positive impact on both the environment and the profits of any business. Reductions in energy demand can be accomplished by different means, such as investments in energy-efficient processes or load management. Analytical tools may be used to support the decision-making process, when choosing between a number of measures, and analysing the results can help to choose which changes should be made. This paper studies two types of energy analysis tool: energy systems optimisation (ESO) and discrete event simulation (DES). The aim of this paper is to describe a method where a DES and an ESO tool are combined in order to study the potential energy and resource reduction in complex industrial energy systems. A case study representing a part of a dairy is also included to illustrate the use of the method. The system modelled includes a process where the durability or longevity of milk increases from a few days to 28 days by using steam injection. The results from the case study show that the dairy has much higher potential production capacity than realised today. This also means that there is a potential to reduce the operation hours from a three-shift to a two-shift operation to meet the existing weekly demand. The analysis also shows that there are large potential reductions in both energy and other resources. The largest potential reductions are primarily from electricity and water. The combination of tools increases the reliability of the analysis and facilitates decision making in an industrial site.


Mardan N.,Linköping University | Klahr R.,Swerea SWECAST AB
Energy | Year: 2012

To face global competition, and also reduce environmental and climate impact, industry-wide changes are needed, especially regarding energy use, which is closely related to global warming. Energy efficiency is therefore an essential task for the future as it has a significant impact on both business profits and the environment. For the analysis of possible changes in industrial production processes, and to choose what changes should be made, various modelling tools can be used as a decision support. This paper uses two types of energy analysis tool: Discrete Event Simulation (DES) and Energy Systems Optimisation (ESO). The aim of this study is to describe how a DES and an ESO tool can be combined. A comprehensive five-step approach is proposed for reducing system costs and making a more robust production system. A case study representing a new investment in part of a Swedish iron foundry is also included to illustrate the method's use. The method described in this paper is based on the use of the DES program QUEST and the ESO tool reMIND. The method combination itself is generic, i.e. other similar programs can be used as well with some adjustments and adaptations.The results from the case study show that when different boundary conditions are used the result obtained from the simulation tools is not optimum, in other words, the result shows only a feasible solution and not the best way to run the factory. It is therefore important to use the optimisation tool in such cases in order to obtain the optimum operating strategy. By using the optimisation tool a substantial amount of resources can be saved. The results also show that the combination of optimisation and simulation tools is useful to provide very detailed information about how the system works and to predict system behaviour as well as to minimise the system cost. © 2012 Elsevier Ltd.


Fourlakidis V.,Swerea Swecast AB | Diaconu L.V.,University of Miskolc | Dioszegi A.,Jönköping University College
Materials Science Forum | Year: 2010

This paper investigates the effect of different carbon contents and cooling rates on gray iron tensile properties as well on the formation of different microstructure features. Four heats with increasing amount of carbon were cast. Every heat constituted of three cylinders, each of them surrounded by different materials which provided a wide range of solidification rates. The casting specimens were subjected to tensile test measurements and to microstructure examination. The results indicate a clear correlation between cooling rates, ultimate tensile strength (UTS), carbon content and eutectic cell size. Microscopic analysis shows also a relation between the primary phase's fraction and the number of the eutectic cells. © (2010) Trans Tech Publications.


Sjogren T.,SP Technical Research Institute of Sweden | Sjogren T.,Jönköping University College | Svensson H.,Swerea Swecast AB
Key Engineering Materials | Year: 2011

In this experimental study, six pearlitic grey cast irons with different Cu and Cr content, different section thicknesses and different eutectoid cooling rates have been examined. The eutectoid cooling rate was approximated by casting simulation analysis. The purpose of the experiments was to study the effect of the matrix structure on the overall mechanical properties. An emphasis is put on the pearlite interlamellar spacing because this controls the resulting mechanical properties to a large extent. By keeping the graphite structure constant, the effect of the matrix structure was able to be studied. This was achieved by shake-out at temperatures above the eutectoid transformation range followed by subsequent cooling in air, mould or in a furnace. The pearlite interlamellar spacing ranged from 90 to 330 nm for the matrices studied. Comparing the strength of the fine structured and coarse structured materials, the tensile and yield strength was reduced by almost 50%. Regarding the elastic deformation, a weak increase in the tangent modulus with increasing alloying content was observed. It was also observed that lower cooling rate decreased the tangent modulus. The tangent modulus ranged between 70 and 110 GPa. Analysing the plastic deformation of the materials, in terms of strain hardening exponent, n, and strength coefficient, K, a strong dependence on the pearlite coarseness was observed. It was concluded that the effect of graphite particle length on tensile strength was negligible and the major improvement on the strength was due to refinement of the pearlite.


Svensson H.,Swerea Swecast AB | Sjogren T.,SP Technical Research Institute of Sweden | Sjogren T.,Jönköping University College
Key Engineering Materials | Year: 2011

The matrix structure formation of cast irons is strongly affected by the casting process where different alloying elements and cooling conditions are methods used to achieve the desired structure and performance of the material. In the presented study, six pearlitic grey cast irons have been analysed regarding how the pearlitic structure formation might be controlled. Different amounts of copper and chromium were added, ranging from 0.07 to 1.11 wt% and 0.08 to 0.60 wt%, respectively. Three different section sizes (Ø20, Ø45 and Ø85 mm) and three different cooling conditions through the eutectoid transformation were used to control the matrix structure formation. The three different cooling conditions were achieved by shake-out at 950°C and cooling in air or furnace, or by keeping the casting in the mould. The present paper focuses on the pearlite appearance, since it strongly affects the mechanical properties. The analysis shows that the refining effect of Cr is much stronger than that of Cu. Comparing the low alloyed base melt with the ones alloyed with Cu and Cr, it is seen that additions of 0.75 wt% Cu refines the pearlite by approximately 10%. Keeping this Cu level constant and adding Cr, it is observed that an addition of ∼0.6 wt% refines the pearlite by another 20%. The most potent refining effect of Cr is achieved by additions up to 0.35 wt%. Keeping the Cr constant at 0.35% and changing the Cu content (0.35 to 1.10 wt%), almost no variation is observed in the overall interlamellar spacing. The eutectoid cooling rate most strongly affects the interlamellar spacing down to cooling rates of about -0.75 °C/s. At higher (i.e. lower value) cooling rates the interlamellar spacing is fairly constant. In addition to studying the interlamellar spacing, the graphite structure has also been analysed and evaluated concerning effects from the different casting variables.


Bladh M.,Swerea SWECAST AB | Wessen M.,Jönköping University College | Dahle A.K.,University of Queensland
Transactions of Nonferrous Metals Society of China (English Edition) | Year: 2010

Significant progress has been made in recent years in understanding and modelling the rheology of semi-solid metals. These models show the effects of the microstructure in terms of size and morphology of globules on the material response. More recently it has been shown that semi-solid metals can behave as compacted granular materials such as sand. A particular signature of such deformation is that the deformation becomes concentrated into shear bands which are 10-20 grains wide. Such bands have also been observed in a range of cast products. Recently, it has been clearly shown that shear bands in high pressure die cast (HPDC) products are also the results of Reynolds dilatancy. Shear bands are also known to be a common feature in semi-solid metal products. The segregation banding in semi-solid metal (SSM) material and its dependence of plunger velocity were investigated. Shaped castings were made with the RHEOMETAL™ process with a range of different plunger velocities. The microstructural characteristics were investigated, with a particular emphasis on shear bands. It is shown that ingate velocities influence the location and characteristics of the shear bands. © 2010 The Nonferrous Metals Society of China.


Dioszegi A.,Jönköping University College | Fourlakidis V.,Swerea Swecast AB | Svensson I.L.,Jönköping University College
Materials Science Forum | Year: 2010

The fracture mechanism of gray cast iron was investigated on tension loaded samples produced under different conditions. The parameters studied included the graphite morphology, the carbon content, the inoculation and the cooling condition. The observations made reveal the role of the microstructure on crack propagation. The cracks were found to always propagate parallel with the graphite flakes. The interaction between the metallic matrix precipitated as primary austenite and graphite has been interpreted by a simplified model of the austenite reinforced eutectic cell. The geometrical transcription gave a standard crack component configuration with known mathematical solution. The microstructure observed in the experiments has been analysed by means of a novel interpretation. The fictitious stress intensity at yield and the fictitious maximum stress intensity at failure are strongly related to the relative shape of the eutectic cell and the fraction primary austenite. A different slope is observed for the material cooled at high rate when the precipitation of primary carbide reduces the stress intensity. The observed relations indicate that the tensile strength of the grey cast iron is the result of the collaboration between the toughness of the metallic matrix precipitated as primary austenite and the brittleness of the graphite phase. The shape and distribution of the primary austenite and graphite can be influenced by chemical composition, by inoculation or by the cooling condition, but they will maintain equilibrium with respect to the stress intensity. © (2010) Trans Tech Publications.


Fourlakidis V.,Swerea SWECAST AB | Lora R.,Jönköping University College | Dioszegi A.,Jönköping University College
Materials Science Forum | Year: 2014

Investigation of dynamic coarsening in lamellar cast iron is extended over a wide interval ranging from hypoeutectic to eutectic composition. The dendrite morphology is defined on as-cast samples produced under various cooling rates. The as-cast morphology is considered being close to the one at the end of solidification. The obtained relations describing the coarsening process as a function of local solidification time and fraction austenite are compared to results obtained from interrupted solidification experiments. By using the Modulus of primary dendrite (MPD) and the Hydraulic diameter of the interdendritic space (DHyd IP) become possible to characterize the coarseness of a wide range of lamellar cast irons solidified under various cooling rates. © (2014) Trans Tech Publications, Switzerland.


Fourlakidis V.,Swerea Swecast AB
Key Engineering Materials | Year: 2011

This paper investigates the effects of graphite added as a conditioner, of Lantanum containing nodulariser and of pouring temperature on the formation of shrinkage porosity in ductile iron casting with an eutectic composition. In this experiment for each heat the cooling curves were recorded by the use of Quick-Cups (thermal analysis cups) and different solidification parameters such as TElow, GRF1, GRF2 and TS were calculated and compared with the porosity which was found from the microstructure examination. The results show that there is a good correlation between the amount of the shrinkage formation and the thermal analysis values. Also this experiment confirm that by using certain treating elements and pouring temperature which was between 1340-1350°C it is possible to eliminate the shrinkage defects in ductile iron castings without using feeders.


Holmgren M.,Swerea SWECAST AB
69th World Foundry Congress 2010, WFC 2010 | Year: 2010

Throughout Europe, there is growing interest in reuse of foundry waste. This can be explained by a common ambition to achieve a more sustainable society, involving savings of natural resources, and different types of legislation, which prohibit the disposal of combustible and organic materials. Other reasons are increasing costs for waste characterisation and disposal. The development of new composting methods means that a number of biological materials can now be composted and converted into soil improvement agents. Foundries set high demands on the sands used in their casting processes and, in the same way, they should be able to supply surplus sand, fully corresponding to customer quality and authorities demands. This means supplying sand to cement, brick, road, compost and soil produceras (etz), which is free from any foreign materials or lumps. The best method is to extract the sand from the return sand system after shakeout, screening and magnetic separation. By supplying sand meeting the foundries' own standards, this will ensure uniform and quality assured customer products. As an alternative, sand may be collected at the shake out and subsequently treated; this, however, is more expensive. The costs associated with re-use are mainly the processing and transport costs, but these can possibly be reduced by taking into account the income generated from selling the material. However, the latter in general may be low or close to zero. The further the materials have to be transported, the greater the increase in costs. In order to assess the economic viability of the re-use option, the applicable disposal costs should be taken into account. These differ between various regions in EU and depend on the residue type. Legislation stimulates the recycling of mineral wastes, partly by setting high disposal fees to reduce the amount of residues for disposal. Regulations and laws are still varying in EU.The way authorities handle regulations and laws very between countries and regions in the country. In a long term, regulation should be constitute globally harmonized and not distort free competition. This paper introduces: * Casting Innovation Centre (R&D Centre in Sweden) * Nayvoc-a new greensand wit h 90 % reduction of VOC* Ext ernal reuse of waste in foundries * Foundry sand disposal laws in EU.

Loading Swerea SWECAST AB collaborators
Loading Swerea SWECAST AB collaborators