Time filter

Source Type

Ivanek R.,Texas A&M University | Osterberg J.,Swedish National Veterinary Institute | Gautam R.,Texas A&M University | Lewerin S.,Swedish University of Agricultural Sciences

Despite the public health importance of Salmonella infection in pigs, little is known about the associated dynamics of fecal shedding and immunity. In this study, we investigated the transitions of pigs through the states of Salmonella fecal shedding and immune response post-Salmonella inoculation as affected by the challenge dose and serotype. Continuoustime multistate Markov models were developed using published experimental data. The model for shedding had four transient states, of which two were shedding (continuous and intermittent shedding) and two non-shedding (latency and intermittent non-shedding), and one absorbing state representing permanent cessation of shedding. The immune response model had two transient states representing responses below and above the seroconversion level. The effects of two doses [low (0.65×10 6 CFU/pig) and high (0.65×10 9 CFU/pig)] and four serotypes (Salmonella Yoruba, Salmonella Cubana, Salmonella Typhimurium, and Salmonella Derby) on the models' transition intensities were evaluated using a proportional intensities model. Results indicated statistically significant effects of the challenge dose and serotype on the dynamics of shedding and immune response. The time spent in the specific states was also estimated. Continuous shedding was on average 10-26 days longer, while intermittent non-shedding was 2-4 days shorter, in pigs challenged with the high compared to low dose. Interestingly, among pigs challenged with the high dose, the continuous and intermittent shedding states were on average up to 10-17 and 3-4 days longer, respectively, in pigs infected with S. Cubana compared to the other three serotypes. Pigs challenged with the high dose of S. Typhimurium or S. Derby seroconverted on average up to 8-11 days faster compared to the low dose. These findings highlight that Salmonella fecal shedding and immune response following Salmonella challenge are dose- and serotype-dependent and that the detection of specific Salmonella strains and immune responses in pigs are time-sensitive. © 2012 Ivanek et al. Source

Morner T.,Swedish National Veterinary Institute | Fischer J.,University of Georgia | Bengis R.,P.O. Box 2851
OIE Revue Scientifique et Technique

Few non-governmental organisations (NGOs) have been involved in work with wildlife diseases and the One Health concept. However, there are several NGOs and scientific institutions, on international and national levels, that can potentially play a significant role in furthering the objectives of the One Health concept by contributing to wildlife health or wildlife disease knowledge and collaborations. This is because many NGOs have dedicated members that voluntarily become involved in the wildlife aspect of the One Health concept, in many different ways. The authors have identified six international organisations, and ten national organisations that could well be involved in this work. They recommend that the World Organisation for Animal Health (OIE) Delegates, and OIE National Focal Points for Wildlife in different countries, focus on establishing links and collaboration between the Veterinary Services (including Focal Points) and various NGOs, as well as scientific institutions both on a national level and international level. Source

Fischer M.,Institute of Diagnostic Virology | Wernike K.,Institute of Diagnostic Virology | Freuling C.M.,Institute of Molecular Biology | Muller T.,Institute of Molecular Biology | And 17 more authors.

Rabies is a lethal and notifiable zoonotic disease for which diagnostics have to meet the highest standards. In recent years, an evolution was especially seen in molecular diagnostics with a wide variety of different detection methods published. Therefore, a first international ring trial specifically designed on the use of reverse transcription polymerase chain reaction (RT-PCR) for detection of lyssavirus genomic RNA was organized. The trial focussed on assessment and comparison of the performance of conventional and real-time assays. In total, 16 European laboratories participated. All participants were asked to investigate a panel of defined lyssavirus RNAs, consisting of Rabies virus (RABV) and European bat lyssavirus 1 and 2 (EBLV-1 and -2) RNA samples, with systems available in their laboratory. The ring trial allowed the important conclusion that conventional RT-PCR assays were really robust assays tested with a high concordance between different laboratories and assays. The real-time RT-PCR system by Wakeley et al. (2005) in combination with an intercalating dye, and the combined version by Hoffmann and co-workers (2010) showed good sensitivity for the detection of all RABV samples included in this test panel. Furthermore, all used EBLV-specific assays, real-time RT-PCRs as well as conventional RT-PCR systems, were shown to be suitable for a reliable detection of EBLVs. It has to be mentioned that differences were seen in the performance between both the individual RT-PCR systems and the laboratories. Laboratories which used more than one molecular assay for testing the sample panel always concluded a correct sample result. Due to the markedly high genetic diversity of lyssaviruses, the application of different assays in diagnostics is needed to achieve a maximum of diagnostic accuracy. To improve the knowledge about the diagnostic performance proficiency testing at an international level is recommended before using lyssavirus molecular diagnostics e.g. for confirmatory testing. © 2013 Fischer et al. Source

Silverlas C.,Swedish University of Agricultural Sciences | Silverlas C.,Swedish National Veterinary Institute | Blanco-Penedo I.,Swedish University of Agricultural Sciences
Epidemiology and Infection

A cohort study was performed to investigate cryptosporidial prevalence and species distribution in 13 organic and 13 conventional dairy herds. Faecal samples were collected from 221 calves and 259 cows. Management routines were recorded at farm inspection and through a questionnaire. Samples were concentrated using sodium chloride flotation and cryptosporidial oocysts were detected by epifluorescence microscopy. Molecular analysis was used to determine species and subtypes. A multivariable model for factors associated with calves being Cryptosporidium spp. positive was built. Cryptosporidium spp.-positive animals were identified in all herds. Prevalences were similar in organic and conventional calves (44·7% vs. 52·3%), as well as in cows (3·1% vs. 3·8%), P > 0·05. Cryptosporidium bovis, C. ryanae and C. parvum were identified. C. ryanae was identified in a calf younger than the described prepatent period. The multivariable model included four significant variables; calf age, cleanliness of bedding, cleaning routines for group pens and farmers' attitudes towards biosecurity. © 2012 Cambridge University Press. Source

Hedman J.,Swedish National Forensic Center | Hedman J.,Lund University | Agren J.,Swedish National Veterinary Institute | Ansell R.,Swedish National Forensic Center | Ansell R.,Linkoping University
Forensic Science International: Genetics Supplement Series

A possible alternative to conventional stain recovery by swabbing, taping or cutting, is the M-Vac wet-vacuum instrument (M-Vac Systems Inc.). We have evaluated M-Vac for sampling of dried saliva on porous and non-porous surfaces, shed cells on clothes and touch DNA. M-Vac gave significantly higher DNA yields for dried saliva stains on laminated wood, compared with cotton swabs (average DNA concentrations 1.14 vs. 0.57. ng/μL, p = 0.02). For stains on glass, M-Vac and cotton swabs gave comparable DNA yields. Additionally, M-Vac retrieved three times as much DNA from saliva stains on cotton fabric (T-shirt) compared with saliva on towels (terry cloth), showing that the absorption properties of the surface affect wet-vacuum sampling. M-Vac was also applied for retrieving wearer DNA from clothes, enabling generation of complete DNA profiles from denim jeans, leggings and cotton T-shirt. A mixed DNA profile was retrieved from an "aggressor" pressing a hand against the shoulder area of a worn T-shirt. Since the major component of the obtained mixed DNA profile was from the wearer, M-Vac may not be ideal for touch DNA sampling of clothes. Wet-vacuum sampling requires a fairly large instrument, trained users and DNA extraction procedures handling large sample volumes. The complexity of M-Vac sampling prevents it from being extensively used, but in specific and important cases it can be a valuable sampling tool. © 2015 Elsevier Ireland Ltd. Source

Discover hidden collaborations