Swedish Institute for Food and Biotechnology

Goteborg, Sweden

Swedish Institute for Food and Biotechnology

Goteborg, Sweden

The Swedish Institute for Food and Biotechnology is an industrial research institute owned by SP Technical Research Institute of Sweden. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Andersson H.,Swedish Institute for Food and Biotechnology | Andersson H.,Chalmers University of Technology | Hjartstam J.,Astrazeneca | Stading M.,Swedish Institute for Food and Biotechnology | And 3 more authors.
European Journal of Pharmaceutical Sciences | Year: 2013

Films of ethyl cellulose (EC) and water-soluble hydroxypropyl cellulose (HPC) can be used for extended release coatings in oral formulations. The permeability and microstructure of free EC/HPC films with 30% w/w HPC were studied to investigate effects of EC molecular weight. Phase separation during film spraying and subsequent HPC leaching after immersion in aqueous media cause pore formation in such films. It was found that sprayed films were porous throughout the bulk of the films after water immersion. The molecular weight affected HPC leaching, pore morphology and film permeability; increasing the molecular weight resulted in decreasing permeability. A model to distinguish the major factors contributing to diffusion retardation in porous films showed that the trend in permeability was determined predominantly by factors associated with the geometry and arrangement of pores, independent of the diffusing species. The film with the highest molecular weight did, however, show an additional contribution from pore wall/permeant interactions. In addition, rapid drying and increasing molecular weight resulted in smaller pores, which suggest that phase separation kinetics affects the final microstructure of EC/HPC films. Thus, the molecular weight influences the microstructural features of pores, which are crucial for mass transport in EC/HPC films. © 2012 Elsevier B.V. All rights reserved.


Flysjo A.,Arla Foods | Flysjo A.,University of Aarhus | Cederberg C.,Swedish Institute for Food and Biotechnology | Henriksson M.,Swedish University of Agricultural Sciences | Ledgard S.,Agresearch Ltd.
Journal of Cleaner Production | Year: 2012

Two most critical factors to address in environmental system analysis of future milk production are 1) the link between milk and beef production, and 2) the competition for land, possibly leading to land use change (LUC) with greenhouse gas (GHG) emissions and loss of biodiversity as important implications. Different methodological approaches concerning these factors, in studies on environmental impacts of dairy production, sometimes lead to contradictory results. Increasing milk yield per cow is often one of the solutions discussed in order to reduce GHG emissions from milk production. However, when also accounting for other systems affected (e.g. beef production) it is not certain that an increase in milk yield per cow leads to a reduction in total GHG emissions per kg milk. In the present study the correlation between carbon footprint (CF) of milk and the amount of milk delivered per cow is investigated for 23 dairy farms (both organic and conventional) in Sweden. Use of a fixed allocation factor of 90% (based on economic value) indicates a reduction in CF with increased milk yield, while no correlation can be noted when system expansion is applied. The average CF for two groups of farms, organic and high yielding conventional, is also calculated. When conducting system expansion the CF is somewhat lower for the organic farms (which have a lower milk yield per cow, but more meat per kg milk), but when a 90% allocation factor is used, the CF is somewhat higher for the organic farms compared to the high yielding conventional farms. In analysis of future strategies for milk production, it is suggested that system expansion should be applied, in order to also account for environmental impacts from affected systems. Thus, scenarios for milk and meat production should be analysed in an integrated approach in order to reduce total emissions from the livestock sector. How to account for emissions from LUC is highly debated and there is no current shared consensus. Different LUC methods result in significantly different results. In this study, four different LUC methods are applied, using data for organic milk production and high yielding conventional milk production systems in Sweden. Depending on which LUC method was applied, the organic system showed about 50% higher or 40% lower CF compared to the conventional high yielding system. Thus, when reporting CF numbers, it is important to report LUC-factors separately and clearly explain the underlying assumptions, since the method of accounting for LUC can drastically change the results. © 2011 Elsevier Ltd. All rights reserved.


Olsen N.V.,430 As | Sijtsema S.J.,Wageningen University | Hall G.,Swedish Institute for Food and Biotechnology
Appetite | Year: 2010

This study investigates the usefulness of integrating moral attitude into the Theory of Planned Behavior (TPB) model when predicting intention to consume ready-to-eat (RTE) meals. Questionnaire data were gathered in three countries: Norway (N=112), The Netherlands (N=99), and Finland (N=134) in spring 2009. A stepwise hierarchical regression was conducted, and the analyses showed that moral attitude is an important predictor of RTE-meal consumption. The feeling of moral obligation, operationalised as a negative feeling of guilt, had a negative effect on peoples' intention to consume ready meals in all the three countries tested, and the explained variance (R2) for TPB increased when moral was added as an explanatory factor. However, although the test showed significant results for the effect of attitude towards behavior and moral in all countries, non-significant results were observed for the effect of subjective norm in both The Netherlands and Norway when moral attitude was included to the TPB-model, indicating cultural differences in the social pressure towards ready meal consumption. © 2010 Elsevier Ltd.


Kotze R.,Cape Peninsula University of Technology | Wiklund J.,Swedish Institute for Food and Biotechnology | Haldenwang R.,Cape Peninsula University of Technology
Ultrasonics | Year: 2013

Pulsed Ultrasonic Velocimetry, commonly referred to as Ultrasonic Velocity Profiling (UVP) in research and engineering applications, is both a method and a device to measure an instantaneous one-dimensional velocity profile in opaque fluids along a measurement axis by using Doppler echography. Studies have suggested that the accuracy of the measured velocity gradient close to wall interfaces need to be improved. The reason for this is due to distortion caused by cavities situated in front of ultrasonic transducers, measurement volumes overlapping wall interfaces, refraction of the ultrasonic wave as well as sound velocity variations (Doppler angle changes). In order to increase the accuracy of velocity data close to wall interfaces and solve previous problems a specially designed delay line transducer was acoustically characterised and evaluated. Velocity profiles measured using the delay line transducer, were initially distorted due to the effect of finite sample volume characteristics and propagation through the delay line material boundary layers. These negative effects were overcome by measuring physical properties of the ultrasonic beam and implementing a newly developed deconvolution procedure. Furthermore, custom velocity estimation algorithms were developed, which improved the time resolution and penetration depth of the UVP system. The optimised UVP system was evaluated and compared to standard transducers in three different straight pipes (inner diameters of 16, 22.5 and 52.8 mm). Velocity data obtained using the optimised UVP system showed significant improvement close to wall interfaces where the velocity gradients are high. The new transducer technology and signal processing techniques reduced previously mentioned problems and are now more suitable for industrial process monitoring and control. © 2012 Elsevier B.V. All rights reserved.


Patent
Cape Peninsula University of Technology, Swedish Institute for Food and Biotechnology | Date: 2013-06-27

A fluid visualization and characterisation system includes a measuring section with a housing defining a fluid flow path for fluid flow. The measuring section includes one or more transducers to emit ultrasonic signals into the fluid flow, and at least one receiver to receive reflections of the ultrasonic signal from reflectors in the fluid flow. The system includes a memory for storing data and a processor operatively connected to the memory. The processor comprises several modules. A velocity estimating module is configured to apply one or more velocity estimation algorithms to received reflections of the ultrasonic signal, or data indicative thereof, to determine a velocity profile of the fluid flow. A deconvolution module is configured to apply a deconvolution algorithm at least to the determined velocity profile to determine a true velocity profile of the fluid flow. A fluid visualization and characterisation module is configured to determine characteristics of the fluid and/or fluid flow in by using the determined velocity profile and/or the true velocity profile.


Svanes E.,Ostfold Research | Aronsson A.K.S.,Swedish Institute for Food and Biotechnology
International Journal of Life Cycle Assessment | Year: 2013

Purpose: Bananas are one of the highest selling fruits worldwide, and for several countries, bananas are an important export commodity. However, very little is known about banana's contribution to global warming. The aims of this work were to study the greenhouse gas emissions of bananas from cradle to retail and cradle to grave and to assess the potential of reducing greenhouse gas (GHG) emissions along the value chain. Methods: Carbon footprint methodology based on ISO-DIS 14067 was used to assess GHG emissions from 1 kg of bananas produced at two plantations in Costa Rica including transport by cargo ship to Norway. Several methodological issues are not clearly addressed in ISO 14067 or the LCA standards 14040 and ISO 14044 underpinning 14067. Examples are allocation, allocation in recycling, representativity and system borders. Methodological choices in this study have been made based on other standards, such as the GHG Protocol Products Standard. Results and discussion: The results indicate that bananas had a carbon footprint (CF) on the same level as other tropical fruits and that the contribution from the primary production stage was low. However, the methodology used in this study and the other comparative studies was not necessarily identical; hence, no definitive conclusions can be drawn. Overseas transport and primary production were the main contributors to the total GHG emissions. Including the consumer stage resulted in a 34 % rise in CF, mainly due to high wastage. The main potential reductions of GHG emissions were identified at the primary production, within the overseas transport stage and at the consumer. Conclusions: The carbon footprint of bananas from cradle to retail was 1.37 kg CO2 per kilogram banana. GHG emissions from transport and primary production could be significantly reduced, which could theoretically give a reduction of as much as 44 % of the total cradle-to-retail CF. The methodology was important for the end result. The choice of system boundaries gives very different results depending on which life cycle stages and which unit processes are included. Allocation issues were also important, both in recycling and in other processes such as transport and storage. The main uncertainties of the CF result are connected to N2O emissions from agriculture, methane emissions from landfills, use of secondary data and variability in the primary production data. Thus, there is a need for an internationally agreed calculation method for bananas and other food products if CFs are to be used for comparative purposes. © 2013 Springer-Verlag Berlin Heidelberg.


Strom A.,Chalmers University of Technology | Schuster E.,Swedish Institute for Food and Biotechnology | Goh S.M.,Singapore Institute of Manufacturing Technology
Carbohydrate Polymers | Year: 2014

Pectins are traditionally divided into two groups, high methoxy and low methoxy. The groupings determine the charge of the pectin and the gelation mechanism. However, not as yet extensively studied is the impact on gelation of the distribution of the charges as characterized by an absolute degree of blockiness (DBabs). The aim of this study was to characterize rheologically the acid gelation of a pectin with a high DBabs and a degree of methyl esterification of ∼37%, in the absence and presence of monovalent ions. The results obtained suggest that a pectin with a blocky charge distribution at pH conditions close to or below the pKa exhibits weak gel-like properties at intermediate frequencies, despite the absence of a permanent network structure. The addition of monovalent ions changed the rheological behavior to resemble that of a strong gel whose properties depended on the type and concentration of the ions. © 2014 The Authors.


Ziegler F.,Swedish Institute for Food and Biotechnology | Hornborg S.,Swedish Institute for Food and Biotechnology | Hornborg S.,Gothenburg University
Marine Policy | Year: 2014

Fisheries management determines how much of each stock can be landed when, where and how fishing is permitted. It has been identified to strongly influence the environmental performance of the fishing industry, including fuel use. As fuel data for fisheries is scarce, especially on a detailed level, the aim of this study was to develop an approach for utilizing fleet-wide fuel data to estimate the fuel use of individual fisheries and mapping how fuel efficiency in Swedish fisheries is influenced by management. Swedish demersal trawl fisheries were studied between 2002 and 2010. Results show that the overall fuel efficiency has improved and interesting patterns between different fisheries and vessel sizes emerged. The difference in fuel efficiency per kilo landing between large and small trawlers was generally small, unless catch capacity was lowered e.g. by selective grids. Stock rebuilding was shown to be highly important for fuel efficiency, as fuel use was inversely correlated to the biomass of eastern Baltic cod. However, rebuilding can also lead to trade-offs e.g. in the case of selective trawling, where protection of depleted stocks comes at the cost of higher fuel intensity per landing. Finally, tax exemption of fuel use in fisheries was shown to maintain inefficient fisheries. These results could be used to reduce overall environmental impacts of fishing further by incorporating fuel use as an additional aspect into the fisheries management system. © 2013 Elsevier Ltd.


Cederberg C.,Swedish Institute for Food and Biotechnology
Animal : an international journal of animal bioscience | Year: 2013

The last decade has seen an increase in environmental systems analysis of livestock production, resulting in a significant number of studies with a holistic approach often based on life-cycle assessment (LCA) methodology. The growing public interest in global warming has added to this development; guidelines for carbon footprint (CF) accounting have been developed, including for greenhouse gas (GHG) accounting of animal products. Here we give an overview of methods for estimating GHG emissions, with emphasis on nitrous oxide, methane and carbon from land use change, presently used in LCA/CF studies of animal products. We discuss where methods and data availability for GHGs and nitrogen (N) compounds most urgently need to be improved in order to produce more accurate environmental assessments of livestock production. We conclude that the top priority is to improve models for N fluxes and emissions from soils and to implement soil carbon change models in LCA/CF studies of animal products. We also point at the need for more farm data and studies measuring emissions from soils, manure and livestock in developing countries.


Svedang H.,Swedish University of Agricultural Sciences | Hornborg S.,Swedish Institute for Food and Biotechnology | Hornborg S.,Gothenburg University
Nature Communications | Year: 2014

Over the last decades, views on fisheries management have oscillated between alarm and trust in management progress. The predominant policy for remedying the world fishing crisis aims at maximum sustainable yield (MSY) by adjusting gear selectivity and fishing effort. Here we report a case study on how striving for higher yields from the Eastern Baltic cod stock by increasing selectivity has become exceedingly detrimental for its productivity. Although there is a successive increase in numbers of undersized fish, growth potential is severely reduced, and fishing mortality in fishable size has increased. Once density-dependent growth is introduced, the process is self-enforcing as long as the recruitment remains stable. Our findings suggest that policies focusing on maximum yield while targeting greater sizes are risky and should instead prioritize catch rates over yield. Disregarding the underlying population structure may jeopardize stock productivity, with dire consequences for the fishing industry and ecosystem structure and function. © 2014 Macmillan Publishers Limited. All rights reserved.

Loading Swedish Institute for Food and Biotechnology collaborators
Loading Swedish Institute for Food and Biotechnology collaborators