Time filter

Source Type

Kerl K.,University Childrens Hospital Muenster | Ries D.,WestfalianWilhelms University | Unland R.,University Childrens Hospital Muenster | Borchert C.,University Childrens Hospital Muenster | And 10 more authors.
BMC Cancer | Year: 2013

Background: Rhabdoid tumors are highly aggressive malignancies affecting infants and very young children. In many instances these tumors are resistant to conventional type chemotherapy necessitating alternative approaches.Methods: Proliferation assays (MTT), apoptosis (propidium iodide/annexin V) and cell cycle analysis (DAPI), RNA expression microarrays and western blots were used to identify synergism of the HDAC (histone deacetylase) inhibitor SAHA with fenretinide, tamoxifen and doxorubicin in rhabdoidtumor cell lines.Results: HDAC1 and HDAC2 are overexpressed in primary rhabdoid tumors and rhabdoid tumor cell lines. Targeting HDACs in rhabdoid tumors induces cell cycle arrest and apoptosis. On the other hand HDAC inhibition induces deregulated gene programs (MYCC-, RB program and the stem cell program) in rhabdoid tumors. These programs are in general associated with cell cycle progression. Targeting these activated pro-proliferative genes by combined approaches of HDAC-inhibitors plus fenretinide, which inhibits cyclinD1, exhibit strong synergistic effects on induction of apoptosis. Furthermore, HDAC inhibition sensitizes rhabdoid tumor cell lines to cell death induced by chemotherapy.Conclusion: Our data demonstrate that HDAC inhibitor treatment in combination with fenretinide or conventional chemotherapy is a promising tool for the treatment of chemoresistant rhabdoid tumors. © 2013 Kerl et al.; licensee BioMed Central Ltd.

Fruhwald M.C.,Swabian Childrens Cancer Center | Bourdeaut F.,French Institute of Health and Medical Research | Roberts C.W.M.,Comprehensive Cancer Center | Chi S.N.,Dana-Farber Cancer Institute | Chi S.N.,Harvard University
Neuro-Oncology | Year: 2016

Atypical teratoid/rhabdoid tumor (AT/RT) is the most common malignant CNS tumor of children below 6 months of age. The majority of AT/RTs demonstrate genomic alterations in SMARCB1 (INI1, SNF5, BAF47) or, to a lesser extent, SMARCA4 (BRG1) of the SWItch/sucrose nonfermentable chromatin remodeling complex. Recent transcription and methylation profiling studies suggest the existence of molecular subgroups. Thus, at the root of these seemingly enigmatic tumors lies a network of factors related to epigenetic regulation, which is not yet completely understood. While conventional-type chemotherapy may have significant survival benefit for certain patients, it remains to be determined which patients will eventually prove resistant to chemotherapy and thus need novel therapeutic strategies. Elucidation of the molecular consequences of a disturbed epigenome has led to the identification of a series of transduction cascades, which may be targeted for therapy. Among these are the pathways of cyclin D1/cyclin-dependent kinases 4 and 6, Hedgehog/GLI1, Wnt/ß-catenin, enhancer of zeste homolog 2, and aurora kinase A, among others. Compounds specifically targeting these pathways or agents that alter the epigenetic state of the cell are currently being evaluated in preclinical settings and in experimental clinical trials for AT/RT. © 2016 The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved.

Vu-Han T.-L.,University of Hamburg | Fruhwald M.C.,Swabian Childrens Cancer Center | Hasselblatt M.,University of Munster | Kerl K.,University of Munster | And 5 more authors.
Cancer Genetics | Year: 2014

Atypical teratoid rhabdoid tumor (AT/RT), a rare and highly malignant tumor entity of the central nervous system that presents in early childhood, has a poor prognosis. AT/RTs are characterized by biallelic inactivating mutations of the gene SMARCB1 in 98% of patients; these mutations may serve as molecular markers for residual tumor cell detection in liquid biopsies. We developed a marker-specific method to detect residual AT/RT cells. Seven of 150 patient samples were selected, each with a histological and genetically ascertained diagnosis of AT/RT. Tumor tissue was either formalin fixed or fresh frozen. DNA was extracted from the patients' peripheral blood leukocytes (PBL) and cerebrospinal fluid (CSF). Multiplex ligation-dependent probe amplification, DNA sequencing, and fluorescence in situ hybridization were used to characterize the tumors' mutations. Residual tumor cell detection used mutation-specific primers and real-time PCR. The detection limit for the residual tumor cell search was 1-18%, depending on the quality of the template provided. The residual tumor cell search in PBL and CSF was negative for all seven patients. The SMARCB1 region of chromosome 22 is prone to DNA double-strand breaks. The individual breakpoints and breakpoint-specific PCR offer the option to detect minimal residual tumor cells in CSF or blood. Even if we did not detect minimal residual tumor cells in the investigated material, proof of principle for this method was confirmed. © 2014 Elsevier Inc.

Unland R.,University of Munster | Kerl K.,University of Munster | Schlosser S.,University of Munster | Farwick N.,University of Munster | And 10 more authors.
Journal of Neuro-Oncology | Year: 2014

Epigenetic alterations are common events in cancer. Using a genome wide methylation screen (Restriction Landmark Genomic Scanning - RLGS) we identified the gene for the dopamine receptor D4 (DRD4) as tumor-specific methylated. As DRD4 is involved in early brain development and may thus be involved in developmentally dependent tumors of the CNS in children epigenetic deregulation of DRD4 and its functional consequences were analyzed in vitro. CpG methylation of DRD4 was detected in 18/24 medulloblastomas, 23/29 ependymomas, 6/6 high-grade gliomas, 7/10 CNS PNET and 8/8 cell lines by qCOBRA and bisulfite sequencing. Real-time RT-PCR demonstrated a significantly inferior expression of DRD4 in primary tumors compared to cell lines and non-malignant control tissues. Epigenetic deregulation of DRD4 was analyzed in reexpression experiments and restoration of DRD4 was observed in medulloblastoma (MB) cells treated with 5-Aza-CdR. Reexpression was not accompanied by demethylation of the DRD4 promoter but by a significant decrease of H3K27me3 and of bound enhancer of zeste homologue 2 (EZH2). Knockdown of EZH2 demonstrated DRD4 as a direct target for inhibition by EZH2. Stimulation of reexpressed DRD4 resulted in an activation of ERK1/2. Our analyses thus disclose that DRD4 is epigenetically repressed in CNS tumors of childhood. DRD4 is a direct target of EZH2 in MB cell lines. EZH2 appears to dominate over aberrant DNA methylation in the epigenetic inhibition of DRD4, which eventually leads to inhibition of a DRD4-mediated stimulation of the ERK1/2 kinase pathway. © 2013 Springer Science+Business Media New York.

Schwake M.,University of Munster | Gunes D.,University of Munster | Kochling M.,University of Munster | Brentrup A.,University of Munster | And 5 more authors.
Acta Neurochirurgica | Year: 2014

Background: Fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) enables more complete resections of tumors in adults. 5-ALA elicits accumulation of fluorescent porphyrins in various cancerous tissues, which can be visualized using a modified neurosurgical microscope with blue light. Although this technique is well established in adults, it has not been investigated systematically in pediatric brain tumors. Specifically, it is unknown how quickly, how long, and to what extent various pediatric tumors accumulate fluorescence. The purpose of this study was to determine utility and time course of 5-ALA-induced fluorescence in typical pediatric brain tumors in vitro. Methods: Cell cultures of medulloblastoma [DAOY and UW228], cPNET [PFSK] atypical teratoid rhabdoid tumor [BT16] and ependymoma [RES196] were incubated with 5-ALA for either 60 minutes or continuously. Porphyrin fluorescence intensities were determined using a fluorescence-activated cell sorter (FACS) after 1, 3, 6, 9, 12 and 24 hours. C6 and U87 cells served as controls. Results: All pediatric brain tumor cell lines displayed fluorescence compared to their respective controls without 5-ALA (p<0.05). Sixty minutes of incubation resulted in peaks between 3 and 6 hours, whereas continuous incubation resulted in peaks at 12 hours or beyond. 60 minute incubation peak levels were between 52 and 91 % of maxima achieved with continuous incubation. Accumulation and clearance varied between cell types. Conclusions: We demonstrate that 5-ALA exposure of cell lines derived from typical pediatric central nervous system (CNS) tumors induces accumulation of fluorescent porphyrins. Differences in uptake and clearance indicate that different application modes may be necessary for fluorescence-guided resection, depending on tumor type. © 2014 Springer-Verlag.

Discover hidden collaborations