SVA National Veterinary Institute

Uppsala, Sweden

SVA National Veterinary Institute

Uppsala, Sweden

Time filter

Source Type

De Medici D.,Instituto Superiore Of Sanita | Kuchta T.,Food Research Institute | Knutsson R.,SVA National Veterinary Institute | Angelov A.,University of Food Technologies | And 14 more authors.
Food Analytical Methods | Year: 2014

Microbiological analysis is an integral part of food quality control, as well as of the management of food chain safety. Microbiological testing of foodstuffs complements the preventive approach to food safety activities based mainly on implementation and application of the concept of Hazard Analysis and Critical Control Points (HACCP). Traditional microbiological methods are powerful but lengthy and cumbersome and therefore not fully compatible with current requirements. Even more, pathogens exist that are fastidious to cultivate or uncultivable at all. Besides immunological tests, molecular methods, specifically those based on polymerase chain reaction (PCR), are available options to meet industry and enforcement needs. The clear advantage of PCR over all other rapid methods is the striking analytical principle that is based on amplification of DNA, a molecule being present in every cell prone to multiply. Just by changing primers and probes, different genomes such as bacteria, viruses or parasites can be detected. A second advantage is the ability to both detect and quantify a biotic contaminant. Some previously identified obstacles of implementation of molecular methods have already been overcome. Technical measures became available that improved robustness of molecular methods, and equipment and biochemicals became much more affordable. Unfortunately, molecular methods suffer from certain drawbacks that hamper their full integration to food safety control. Those encompass a suitable sample pre-treatment especially for a quantitative extraction of bacteria and viruses from solid foods, limited availability of appropriate controls to evaluate the effectiveness of the analytical procedure, the current inability of molecular methods to distinguish DNA from viable cells and DNA from dead or non-cultivable cells, and the slow progress of international harmonisation and standardisation, which limit full acceptance of PCR-based methods in food control. The aim of this review is to describe the context and the prospects of PCR-based methods, as well as trends in research and development aimed at solving the next decade challenges in order to achieve full integration of molecular methods in food safety control. © 2014, Springer Science+Business Media New York.


Kuchta T.,Food Research Institute | Knutsson R.,SVA National Veterinary Institute | Fiore A.,Instituto Superiore Of Sanita | Kudirkiene E.,Lithuanian University of Health Sciences | And 8 more authors.
Letters in Applied Microbiology | Year: 2014

In the last decade, nucleic acid-based methods gradually started to replace or complement the culture-based methods and immunochemical assays in routine laboratories involved in food control. In particular, real-time polymerase chain reaction (PCR) was technically developed to the stage of good speed, sensitivity and reproducibility, at minimized risk of carry-over contamination. Basic advantages provided by nucleic acid-based methods are higher speed and added information, such as subspecies identification, information on the presence of genes important for virulence or antibiotic resistance. Nucleic acid-based methods are attractive also to detect important foodborne pathogens for which no classical counterparts are available, namely foodborne pathogenic viruses. This review briefly summarizes currently available or developing molecular technologies that may be candidates for involvement in microbiological molecular methods in the next decade. Potential of nonamplification as well as amplification methods is discussed, including fluorescent in situ hybridization, alternative PCR chemistries, alternative amplification technologies, digital PCR and nanotechnologies. © 2014 The Society for Applied Microbiology.


Knutsson R.,SVA National Veterinary Institute | van Rotterdam B.,RIVM National Institute for Public Health and the Environment | Fach P.,AFSSA French Food Safety Agency | De Medici D.,Iss Instituto Superiore Of Sanita | And 10 more authors.
International Journal of Food Microbiology | Year: 2011

A next frontier of the global food safety agenda has to consider a broad spectrum of bio-risks, such as accidental and intentional contaminations in the food and feed chain. In this article, the background for the research needs related to biotraceability and response to bioterrorism incidents are outlined. Given the current scale of international trade any response need to be considered in an international context. Biotraceability (e.g. the ability to use downstream information to point to processes or within a particular food chain that can be identified as the source of undesirable agents) is crucial in any food-born outbreak and particular in the response to bioterrorism events. In the later case, tested and proven biotraceability improves the following: (i) international collaboration of validated tracing tools and detection methods, (ii) multi-disciplinary expertise and collaboration in the field of food microbiology and conceptual modeling of the food chain, (iii) sampling as a key step in biotracing (iv) optimized sample preparation procedures, including laboratory work in Biosafety level 3 (BSL-3) laboratories, (v) biomarker discovery for relevant tracing and tracking applications, and (vi) high-throughput sequencing using bio-informatic platforms to speed up the characterization of the biological agent. By applying biotraceability, the response phase during a bioterrorism event may be shortened and is facilitated for tracing the origin of biological agent contamination. © 2010 Elsevier B.V.


Fenicia L.,Iss Instituto Superiore Of Sanita | Fach P.,Anses French Agency for Food | van Rotterdam B.J.,RIVM National Institute for Public Health and the Environment | Anniballi F.,Iss Instituto Superiore Of Sanita | And 9 more authors.
International Journal of Food Microbiology | Year: 2011

A real-time PCR method for detection and typing of BoNT-producing Clostridia types A, B, E, and F was developed on the framework of the European Research Project 'Biotracer'.A primary evaluation was carried out using 104 strains and 17 clinical and food samples linked to botulism cases. Results showed 100% relative accuracy, 100% relative sensitivity, 100% relative specificity, and 100% selectivity (inclusivity on 73 strains and exclusivity on 31 strains) of the real-time PCR against the reference cultural method combined with the standard mouse bioassay.Furthermore, a ring trial study performed at four different European laboratories in Italy, France, the Netherlands, and Sweden was carried out using 47 strains, and 30 clinical and food samples linked to botulism cases. Results showed a concordance of 95.7% among the four laboratories. The reproducibility generated a relative standard deviation in the range of 2.18% to 13.61%. Considering the high level of agreement achieved between the laboratories, this real-time PCR is a suitable method for rapid detection and typing of BoNT-producing Clostridia in clinical, food and environmental samples and thus support the use of it as an international standard method. © 2011 Elsevier B.V.


Fach P.,AFSSA French Food Safety Agency | Fenicia L.,Iss Instituto Superiore Of Sanita | Knutsson R.,SVA National Veterinary Institute | Wielinga P.R.,RIVM National Institute for Public Health and the Environment | And 8 more authors.
International Journal of Food Microbiology | Year: 2011

Rapid and specific detection of botulinum neurotoxin (BoNT) producing Clostridia is a priority for public health authorities, in case of both natural and intentional botulism outbreaks. This study reports on the evaluation of a detection system based on the GeneDisc Cycler designed for simultaneously testing the bont/A, bont/B, bont/E and bont/F genes encoding for the botulinum neurotoxins types A, B, E and F. BoNT-producing Clostridia (n= 102) and non-BoNT-producing bacteria (n= 52) isolated from clinical, food and environmental samples were tested using this macro-array and results were compared to the reference lethality test on mice. The bont genes were correctly detected in all C. botulinum type A, B, E and F strains available, as well as in toxigenic C. baratii type F and toxigenic C. butyricum type E. No cross reactivity was observed with non human-toxigenic bacteria, C. botulinum types C, D and G. The identification of the bont genotype using the macro-array was correlated to toxino-typing of the BoNTs as determined by the mouse bioassay. An 'evaluation trial' of the GeneDisc array performed blind in four European laboratories with 77 BoNT-producing Clostridia as well as 10 food and clinical samples showed that the developed macro-array is specific and reliable for identifying BoNT/A-, BoNT/B-, BoNT/E- and BoNT/F-producing clostridial strains and for screening naturally contaminated food and fecal samples. The test is robust, has a low detection limit (c.a. 5 to 50 genome copies in the PCR reaction microwell) and is promising for monitoring BoNT-producing Clostridia in different kinds of samples including food and clinical samples. © 2010 Elsevier B.V.


PubMed | SVA National Veterinary Institute
Type: | Journal: International journal of food microbiology | Year: 2011

A next frontier of the global food safety agenda has to consider a broad spectrum of bio-risks, such as accidental and intentional contaminations in the food and feed chain. In this article, the background for the research needs related to biotraceability and response to bioterrorism incidents are outlined. Given the current scale of international trade any response need to be considered in an international context. Biotraceability (e.g. the ability to use downstream information to point to processes or within a particular food chain that can be identified as the source of undesirable agents) is crucial in any food-born outbreak and particular in the response to bioterrorism events. In the later case, tested and proven biotraceability improves the following: (i) international collaboration of validated tracing tools and detection methods, (ii) multi-disciplinary expertise and collaboration in the field of food microbiology and conceptual modeling of the food chain, (iii) sampling as a key step in biotracing (iv) optimized sample preparation procedures, including laboratory work in Biosafety level 3 (BSL-3) laboratories, (v) biomarker discovery for relevant tracing and tracking applications, and (vi) high-throughput sequencing using bio-informatic platforms to speed up the characterization of the biological agent. By applying biotraceability, the response phase during a bioterrorism event may be shortened and is facilitated for tracing the origin of biological agent contamination.

Loading SVA National Veterinary Institute collaborators
Loading SVA National Veterinary Institute collaborators