Entity

Time filter

Source Type


Yu S.,Shanghai JiaoTong University | Wang X.-H.,Shanghai JiaoTong University | Chen Y.-G.,Nanjing Medical University | Zheng Q.,Shanghai JiaoTong University | And 4 more authors.
Transactions of Nonferrous Metals Society of China (English Edition) | Year: 2015

The effects of biodegradable Mg-6Zn alloy on tight junction of intestinal epithelial cells (IEC-6) were investigated. In the in vitro experiments, the cells were exposed to Mg-6Zn alloy extracts with different concentrations (0, 20% and 40%) for 1, 3 and 5 d. The real-time polymerase chain reaction (PCR) results show that when the cells are treated with 40% and 20% extracts, the expression of Zona Occludens 1 (ZO-1) and Occludin increase as compared with those in the control group. In the in vivo experiments, Mg-6Zn alloy and titanium staples were implanted into rabbits' intestinal tract for 1, 2 and 3 weeks. By immunohistochemical staining of peri-implant intestinal tissue, increased expression of Occludin and ZO-1 are observed in the Mg-6Zn alloy groups as compared with those in the titanium and control groups. The results show that Mg-6Zn alloy in intestine may promote the regeneration of tight junction, and the extract with a certain concentration can induce the expression of tight junction related genes in IEC-6 cells. © 2015 The Nonferrous Metals Society of China. Source


Chen Y.,Nanjing Medical University | Yan J.,Shanghai JiaoTong University | Wang X.,Shanghai JiaoTong University | Yu S.,Shanghai JiaoTong University | And 6 more authors.
BioMetals | Year: 2014

Biodegradable magnesium alloy implants have attracted much attention because of their excellent biocompatibility and good mechanical properties. However, effects of Mg alloy on cell apoptosis remain unclear. The aim of this study was to investigate the effects of the Mg-6Zn alloy on the apoptosis and necrosis of common bile duct (CBD) epithelial cells. In the in vitro experiments, primary mouse extrahepatic bile epithelial cells (MEBECs) were exposed to Mg-6Zn alloy extracts with different concentrations (0, 40, 80, and 100 %). Flow cytometry analysis indicated that low concentration Mg-6Zn extract can induce apoptosis of MEBECs, and high concentration Mg-6Zn extracts may relate to necrosis and/or 'apoptotic necrosis'. Real-time PCR results showed that when MEBECs were treated with 40 % extracts for 3 days, the relative apoptotic genes including Bax, Bax/Bcl-2 ratio, NF-κB and caspase-3 were higher than those in the control group. In the in vivo experiments, Mg-6Zn alloy stents were implanted into rabbits' CBD for 1, 2, 3 weeks, respectively. Based on the hematoxylin and eosin (H&E) staining of peri-implant CBD tissue, no apoptotic bodies and necrotic cells were observed. Results of immunohistochemical staining also showed Mg-6Zn stents did not increase expression levels of apoptosis related gene such as Bax, Bcl-2, Bax/Bcl-2 ratio, TNF-α, NF-κB and caspase-3 in CBD, which indicating Mg-6Zn did not induce significant apoptosis in the in vivo experiments. The different results of in vitro and in vivo experiment may result from the low corrosion rate of Mg-6Zn alloy stents in vivo and local Mg2+ ion concentration in CBD. © 2014 Springer Science+Business Media New York. Source


Wang Z.,Shanghai JiaoTong University | Yan J.,Shanghai JiaoTong University | Li J.,Shanghai JiaoTong University | Zheng Q.,Shanghai JiaoTong University | And 2 more authors.
Materials Science and Engineering B: Solid-State Materials for Advanced Technology | Year: 2012

In this study, intestinal epithelial cells (IEC)-6 were cultured in different concentration extracts of Mg-6Zn alloys for different time periods. To achieve a total of three concentrations (100%, 60% and 20% concentration), the extracts were serially diluted with Dulbecco's modified Eagle medium High Glucose to observe a dose-response relationship. We studied the indirect effects of Mg-6Zn alloys on IEC-6 cells apoptosis. The apoptosis of IEC-6 cells was measured using flow cytometry. And the apoptosis of IEC-6 cells was evaluated by investigating the expression of caspase-1and Bcl-2 using real-time polymerase chain reaction (PCR) and Western blotting tests. It was found that the levels of apoptosis in IEC-6 cells cultured in 100% Mg-6Zn alloy extracts were significantly higher than those in 60% and 20% extracts; the 100% extract can down-regulate expression of Bcl-2 after culture. The in vitro results indicated that the conspicuous alkaline environment and excessive Mg concentration, even Zn concentration caused by rapid corrosion of Mg-6Zn alloys promote IEC-6 cells apoptosis, although further experiments will be necessary to formally prove our conclusions. Therefore, the adjustment of the degradation rate is needed for using Mg-Zn alloy as a surgical suture material. © 2012 Elsevier B.V. All rights reserved. Source


Chen Y.,Shanghai JiaoTong University | Yan J.,Shanghai JiaoTong University | Zhao C.,Shanghai JiaoTong University | Zhang S.,Suzhou Origin Medical Technology Co. | And 5 more authors.
Journal of Materials Science: Materials in Medicine | Year: 2014

There is a great clinical need for biodegradable bile duct stents. Biodegradable stents made of an Mg-6Zn alloy were investigated in both vivo animal experiment and in vitro cell experiments. During the in vivo experiments, blood biochemical tests were performed to determine serum magnesium, serum creatinine (CREA), blood urea nitro-gen (BUN), serum lipase (LPS), total bilirubin (TB) and glutamic-pyruvic transaminase (GPT) levels. Moreover, tissue samples of common bile duct (CBD), liver and kidney were taken for histological evaluation. In the in vitro experiments, primary mouse extrahepatic bile duct epithelial cells (MEBDECs) were isolated and cultured. Cytotoxicity testing was carried out using the MTT method. Flow cytometry analyses with propidium iodide staining were performed to evaluate the effect of Mg-6Zn alloy extracts on cell cycle. The in vivo experiments revealed no significant differences (P > 0.05) in serum magnesium, CREA, BUN, LPS, TB or GPT before and after the operation. Based on the HE results, hepatocytes, bile duct epithelial cells, renal glomerulus and renal tubule tissues did not present significant necrosis. In the in vitro experiments, the cell relative growth rate curve did not change significantly from 20 to 40 % extracts. In vitro experiments showed that 20-40 % Mg-6Zn extracts are bio-safe for MEBDECs. In vivo experiments showed that Mg-6Zn stents did not affect several important bio-chemical parameters or, harm the function or morphology of the CBD, kidney, pancreas and liver. Our data suggested that this Mg-6Zn alloy is a safe biocompatible material for CBD. © 2013 Springer Science+Business Media New York. Source


Han P.,Shanghai JiaoTong University | Tan M.,Shanghai Institute of Technology | Zhang S.,Suzhou Origin Medical Technology Co. | Ji W.,Shanghai JiaoTong University | And 6 more authors.
International Journal of Molecular Sciences | Year: 2014

A type of specially designed pin model of Mg-Zn alloy was implanted into the full thickness of lesions of New Zealand rabbits' femoral condyles. The recovery progress, outer surface healing and in vivo degradation were characterized by various methods including radiographs, Micro-CT scan with surface rendering, SEM (scanning electron microscope) with EDX (Energy Dispersive X-ray analysis) and so on. The in vivo results suggested that a few but not sufficient bridges for holding force were formed between the bone and the implant if there was a preexisting gap between them. The rapid degradation of the implantation in the condyle would result in the appearance of cavities. Morphological evaluation of the specially designed pins indicated that the cusp was the most vulnerable part during degradation. Furthermore, different implantation sites with distinct components and biological functions can lead to different degradation rates of Mg-Zn alloy. The rate of Mg-Zn alloy decreases in the following order: implantation into soft tissue, less trabecular bone, more trabecular bone, and cortical bone. Because of the complexities of in vivo degradation, it is necessary for the design of biomedical Mg-Zn devices to take into consideration the implantation sites used in clinics. © 2014 by the authors; licensee MDPI, Basel, Switzerland. Source

Discover hidden collaborations