Time filter

Source Type

Suzhou, China

Liu X.-Q.,University of Chinese Academy of Sciences | Song W.-J.,University of Chinese Academy of Sciences | Sun T.-M.,Anhui University of Science and Technology | Zhang P.-Z.,Suzhou GenePharma Co. | Wang J.,University of Chinese Academy of Sciences
Molecular Pharmaceutics

MiRNAs are viable therapeutic targets for cancer therapy, but the targeted delivery of miRNA or its anti-miRNA antisense oligonucleotides (AMOs) remains a challenge. We report here a PEGylated LPH (liposome-polycation-hyaluronic acid) nanoparticle formulation modified with cyclic RGD peptide (cRGD) for specific and efficient delivery of AMO into endothelial cells, targeting αvβ3 integrin present on the tumor neovasculature. The nanoparticles effectively delivered anti-miR-296 AMO to the cytoplasm and downregulated the target miRNA in human umbilical vein endothelial cells (HUVECs), which further efficiently suppressed blood tube formulation and endothelial cell migration, owing to significant upregulation of hepatocyte growth factor-regulated tyrosine kinase substrate (HGS), whereas nanoparticles without cRGD modification showed only little AMO uptake and miRNA silencing activity. In vivo assessment of angiogenesis using Matrigel plug assay also demonstrated that cRGD modified LPH nanoparticles have potential for antiangiogenesis in miRNA therapeutics. With the delivery of anti-miR-296 AMO by targeted nanoparticles, significant decrease in microvessel formulation within Matrigel was achieved through suppressing the invasion of CD31-positive cells into Matrigel and prompting HGS expression in angiogenic endothelial cells. © 2011 American Chemical Society. Source

Hong J.,Peking University | Huang Y.,Peking University | Li J.,Peking University | Yi F.,Peking University | And 11 more authors.
FASEB Journal

Double-stranded small interfering RNAs (siRNAs) are important modulators of biological processes and hold great promise for therapeutic applications. However, serum processing of synthetic siRNAs is still largely unknown. To address this issue, serum degradation assays of 125 siRNAs were first performed in this study. Four siRNA categories of distinct serum stability were identified, including a group of siRNAs that were stable in their native form for both in vitro and in vivo assays. Fine mapping of the cleavage events occurring in serum treatment demonstrated that most occurred at two vulnerable sites, leading to a speculation that rational modification of these sites might protect most siRNAs from serum degradation. For proof of concept, an exhaustive siRNA modification study was performed. In addition to the consistent stabilization pattern revealed at these sites, our study further showed that a single modification made at the cleavage site stabilized the siRNAs to a large extent, highlighting the importance of these sites in siRNA degradation. In summary, the present study provided a comprehensive picture of serum processing of siRNA as well as a starting point for a rational siRNA modification strategy, both of which are of great importance to in vivo and therapeutic applications of siRNA. © FASEB. Source

Song W.-J.,Anhui University of Science and Technology | Du J.-Z.,Anhui University of Science and Technology | Sun T.-M.,Anhui University of Science and Technology | Zhang P.-Z.,Suzhou GenePharma Co. | Wang J.,Anhui University of Science and Technology

An efficient and safe delivery system for small interfering RNA (siRNA) is required for clinical application of RNA interfering therapeutics. Polyethyleneimine (PEI)-capped gold nanoparticles (AuNPs) are successfully manufactured using PEI as the reductant and stabilizer, which bind siRNA at an appropriate weight ratio by electrostatic interaction and result in well-dispersed nanoparticles with uniform structure and narrow size distribution. With siRNA binding, PEI-capped AuNPs induce more significant and enhanced reduction in targeted green fluorescent protein expression in MDA-MB-435s cells, though more internalized PEI/siRNA complexes in cells are evidenced by confocal laser scanning microscopy observation and fluorescence-activated cell sorting analyses. PEI-capped AuNPs/siRNA targeting endogenous cell-cycle kinase, an oncogene polo-like kinase 1 (PLK1), display significant gene expression knockdown and induce enhanced cell apoptosis, whereas it is not obvious when the cells are treated with PLK1 siRNA using PEI as the carrier. Without exhibiting cellular toxicity, PEI-capped AuNPs appear to be suitable as a potential carrier for intracellular siRNA delivery. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA. Source

Mao C.-Q.,Anhui University of Science and Technology | Du J.-Z.,Anhui University of Science and Technology | Sun T.-M.,Anhui University of Science and Technology | Yao Y.-D.,Sun Yat Sen University | And 3 more authors.

One of the key challenges in the development of RNA interference-based cancer therapy is the lack of an efficient delivery system for synthetic small interfering RNAs (siRNAs) that would enable efficient uptake by tumor cells and allow for significant knockdown of a target transcript in vivo. Here, we describe a micelleplex system based on an amphiphilic and cationic triblock copolymer, which can systemically deliver siRNA targeting the acid ceramidase (AC) gene for cancer therapy. This triblock copolymer, consisting of monomethoxy poly(ethylene glycol), poly(ε-caprolactone) and poly(2-aminoethyl ethylene phosphate), self-assembles into micellar nanoparticles (MNPs) in aqueous solution with an average diameter of 60 nm and a zeta potential of approximately 48 mV. The resulting micelleplex, formed by the interaction of MNPs and siRNA, was effectively internalized by BT474 breast cancer cells and siRNA was subsequently released, resulting in significant gene knockdown. This effect was demonstrated by significant down-regulation of luciferase expression in BT474-luciferase cells which stably express luciferase, and suppression of AC expression in BT474 cells at both the transcriptional and protein level, following delivery of specific siRNAs by the micelleplex. Furthermore, a micelleplex carrying siRNA targeting the AC (micelleplexsiAC) gene was found to induce remarkable apoptosis and reduce the proliferation of cancer cells. Systemic delivery of micelleplexsiAC significantly inhibited tumor growth in a BT474 xenograft murine model, with depressed expression of AC and no positive activation of the innate immune response, suggesting therapeutic promise for micelleplex siRNA delivery in cancer therapy. © 2011 Elsevier Ltd. Source

Sun T.-M.,Anhui University of Science and Technology | Du J.-Z.,Anhui University of Science and Technology | Yao Y.-D.,Sun Yat Sen University | Mao C.-Q.,Anhui University of Science and Technology | And 6 more authors.
ACS Nano

Combination of two or more therapeutic strategies with different mechanisms can cooperatively prohibit cancer development. Combination of chemotherapy and small interfering RNA (siRNA)-based therapy represents an example of this approach. Hypothesizing that the chemotherapeutic drug and the siRNA should be simultaneously delivered to the same tumoral cell to exert their synergistic effect, the development of delivery systems that can efficiently encapsulate two drugs and successfully deliver payloads to targeted sites via systemic administration has proven to be challenging. Here, we demonstrate an innovative "two-in-one" micelleplex approach based on micellar nanoparticles of a biodegradable triblock copolymer poly(ethylene glycol)-b-poly(ε- caprolactone)-b-poly(2-aminoethyl ethylene phosphate) to systemically deliver the siRNA and chemotherapeutic drug. We show clear evidence that the micelleplex is capable of delivering siRNA and paclitaxel simultaneously to the same tumoral cells both in vitro and in vivo. We further demonstrate that systemic administration of the micelleplex carrying polo-like kinase 1 (Plk1) specific siRNA and paclitaxel can induce a synergistic tumor suppression effect in the MDA-MB-435s xenograft murine model, requiring a thousand-fold less paclitaxel than needed for paclitaxel monotherapy delivered by the micelleplex and without activation of the innate immune response or generation of carrier-associated toxicity. © 2011 American Chemical Society. Source

Discover hidden collaborations