Bicester, United Kingdom
Bicester, United Kingdom
SEARCH FILTERS
Time filter
Source Type

Patent
Sustainable Power | Date: 2015-07-28

The invention concern methods for converting carbonaceous feedstock slurry into synthetic fuel gas comprising: (a) introducing a carbonaceous feed stock slurry into a first reaction vessel via a continuous feed; (b) converting said carbonaceous feed stock slurry to a carbon char slurry comprising carbon char, and water by allowing said carbonaceous feed stock slurry to have a residency time of between 5 and 30 minutes in said first reaction vessel, said carbonaceous feed stock slurry being heated to a temperature of between about 260 to about 320 C. at a pressure such that water does not flash to steam.


News Article | May 24, 2017
Site: www.eurekalert.org

Nanoengineers at the University of California San Diego have developed the first printed battery that is flexible, stretchable and rechargeable. The zinc batteries could be used to power everything from wearable sensors to solar cells and other kinds of electronics. The work appears in the April 19, 2017 issue of Advanced Energy Materials. The researchers made the printed batteries flexible and stretchable by incorporating a hyper-elastic polymer material made from isoprene, one of the main ingredients in rubber, and polystyrene, a resin-like component. The substance, known as SIS, allows the batteries to stretch to twice their size, in any direction, without suffering damage. The ink used to print the batteries is made of zinc silver oxide mixed with SIS. While zinc batteries have been in use for a long time, they are typically non-rechargeable. The researchers added bismuth oxide to the batteries to make them rechargeable. "This is a significant step toward self-powered stretchable electronics," said Joseph Wang, one of the paper's senior authors and a nanoengineering professor at the Jacobs School of Engineering at UC San Diego, where he directs the school's Center for Wearable Sensors. "We expect this technology to pave the way to enhance other forms of energy storage and printable, stretchable electronics, not just for zinc-based batteries but also for Lithium-ion batteries, as well as supercapacitors and photovoltaic cells." The prototype battery the researchers developed has about 1/5 the capacity of a rechargeable hearing aid battery. But it is 1/10 as thick, cheaper and uses commercially available materials. It takes two of these batteries to power a 3 Volt LED. The researchers are still working to improve the battery's performance. Next steps include expanding the use of the technology to different applications, such as solar and fuel cells; and using the battery to power different kinds of electronic devices. Researchers used standard screen printing techniques to make the batteries--a method that dramatically drives down the costs of the technology. Typical materials for one battery cost only $0.50. A comparable commercially available rechargeable battery costs $5.00 Batteries can be printed directly on fabric or on materials that allow wearables to adhere to the skin. They also can be printed as a strip, to power a device that needs more energy. They are stable and can be worn for a long period of time. The key ingredient that makes the batteries rechargeable is a molecule called bismuth oxide which, when mixed into the batteries' zinc electrodes, prolongs the life of devices and allows them to recharge. Adding bismuth oxide to zinc batteries is standard practice in industry to improve performance, but until recently, there hasn't been a thorough scientific explanation for why. Last year, UC San Diego nanoengineers led by Professor Y. Shirley Meng published a detailed molecular study addressing this question (download PDF here). When zinc batteries discharge, their electrodes react with the liquid electrolyte inside the battery, producing zinc salts that dissolve into a solution. This eventually short circuits the battery. Adding bismuth oxide keeps the electrode from losing zinc to the electrolyte. This ensures that the batteries continue to work and can be recharged. The work shows that it is possible to use small amounts of additives, such as bismuth oxide, to change the properties of materials. "Understanding the scientific mechanism to do this will allow us to turn non-rechargeable batteries into rechargeable batteries--not just zinc batteries but also for other electro-chemistries, such as Lithium-oxygen," said Meng, who directs the Sustainable Power and Energy Center at the UC San Diego Jacobs School of Engineering Rajan Kumar, a co-first author on this Advanced Energy Materials paper, is a nanoengineering Ph.D. student at the Jacobs School of Engineering. He and nanoengineering professor Wang are leading a team focused on commercializing aspects of this work. The team is one of five to be selected to join a new technology accelerator at UC San Diego. The technology accelerator is run by the UC San Diego Institute for the Global Entrepreneur, which is a collaboration between the Jacobs School of Engineering and Rady School of Management. Kumar is excited at the prospect of taking advantage of all that the IGE Technology Accelerator has to offer. "For us, it's strategically perfect," said Kumar, referring to the $50,000 funding for prototype improvements, the focus on prototype testing with a strategic partner, and the entrepreneurship mentoring. Kumar is confident in the team's innovations, which includes the ability to replace coin batteries with thin, stretchable batteries. Making the right strategic moves now is critical for commercialization success. "It's now about making sure our energies are focused in the right direction," said Kumar. In addition to the IGE Technology Accelerator, the team was also recently selected to participate in the NSF Innovation-Corps (I-Corps) program at UC San Diego, also administered by the Institute for the Global Entrepreneur. One of the key tenets of the I-Corps program is helping startup teams validate their target markets and business models early in the commercialization process. Through NSF I-Corps, for example, Kumar has already started interviewing potential customers which has helped the team better focus their commercialization strategy. Through these programs, Kumar is focused on leading the team through a series of milestones in order to best position their innovations to refine "both what to build and who to build it for," he said. "All-Printed, Stretchable Zn-Ag?O Rechargeable Battery via Hyperelastic Binder for Self-Powering Wearable Electronics" in the journal Advanced Energy Materials. Authors: Rajan Kumar, Jaewook Shin, Lu Yin, Jung-Min You, Prof. Shirley Meng and Prof. Joseph Wang, Department of Nanoengineering, Jacobs School of Engineering, University of California San Diego. Joseph Wang is a distinguished professor, holds the SAIC endowed chair, and serves as chair of the Department of NanoEngineering at the UC San Diego Jacobs School of Engineering where he directs the Center for Wearable Sensors. Shirley Meng is a professor in the Department of NanoEngineering and Director of the Sustainable Power and Energy Center at the UC San Diego Jacobs School of Engineering. Research funders include: Advanced Research Projects Agency-Energy (DE-AR0000535); Rajan Kumar acknowledges the U.S. National Science Foundation (NSF) Graduate Research Fellowship under Grant No. (DGE-1144086). This work was performed in part at the San Diego Nanotechnology Infrastructure (SDNI), a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the U.S. National Science Foundation (NSF).


News Article | May 28, 2017
Site: www.sciencedaily.com

Nanoengineers at the University of California San Diego have developed the first printed battery that is flexible, stretchable and rechargeable. The zinc batteries could be used to power everything from wearable sensors to solar cells and other kinds of electronics. The work appears in the April 19, 2017 issue of Advanced Energy Materials. The researchers made the printed batteries flexible and stretchable by incorporating a hyper-elastic polymer material made from isoprene, one of the main ingredients in rubber, and polystyrene, a resin-like component. The substance, known as SIS, allows the batteries to stretch to twice their size, in any direction, without suffering damage. The ink used to print the batteries is made of zinc silver oxide mixed with SIS. While zinc batteries have been in use for a long time, they are typically non-rechargeable. The researchers added bismuth oxide to the batteries to make them rechargeable. "This is a significant step toward self-powered stretchable electronics," said Joseph Wang, one of the paper's senior authors and a nanoengineering professor at the Jacobs School of Engineering at UC San Diego, where he directs the school's Center for Wearable Sensors. "We expect this technology to pave the way to enhance other forms of energy storage and printable, stretchable electronics, not just for zinc-based batteries but also for Lithium-ion batteries, as well as supercapacitors and photovoltaic cells." The prototype battery the researchers developed has about 1/5 the capacity of a rechargeable hearing aid battery. But it is 1/10 as thick, cheaper and uses commercially available materials. It takes two of these batteries to power a 3 Volt LED. The researchers are still working to improve the battery's performance. Next steps include expanding the use of the technology to different applications, such as solar and fuel cells; and using the battery to power different kinds of electronic devices. Researchers used standard screen printing techniques to make the batteries -- a method that dramatically drives down the costs of the technology. Typical materials for one battery cost only $0.50. A comparable commercially available rechargeable battery costs $5.00 Batteries can be printed directly on fabric or on materials that allow wearables to adhere to the skin. They also can be printed as a strip, to power a device that needs more energy. They are stable and can be worn for a long period of time. The key ingredient that makes the batteries rechargeable is a molecule called bismuth oxide which, when mixed into the batteries' zinc electrodes, prolongs the life of devices and allows them to recharge. Adding bismuth oxide to zinc batteries is standard practice in industry to improve performance, but until recently, there hasn't been a thorough scientific explanation for why. Last year, UC San Diego nanoengineers led by Professor Y. Shirley Meng published a detailed molecular study addressing this question. When zinc batteries discharge, their electrodes react with the liquid electrolyte inside the battery, producing zinc salts that dissolve into a solution. This eventually short circuits the battery. Adding bismuth oxide keeps the electrode from losing zinc to the electrolyte. This ensures that the batteries continue to work and can be recharged. The work shows that it is possible to use small amounts of additives, such as bismuth oxide, to change the properties of materials. "Understanding the scientific mechanism to do this will allow us to turn non-rechargeable batteries into rechargeable batteries -- not just zinc batteries but also for other electro-chemistries, such as Lithium-oxygen," said Meng, who directs the Sustainable Power and Energy Center at the UC San Diego Jacobs School of Engineering Rajan Kumar, a co-first author on this Advanced Energy Materials paper, is a nanoengineering Ph.D. student at the Jacobs School of Engineering. He and nanoengineering professor Wang are leading a team focused on commercializing aspects of this work. The team is one of five to be selected to join a new technology accelerator at UC San Diego. The technology accelerator is run by the UC San Diego Institute for the Global Entrepreneur, which is a collaboration between the Jacobs School of Engineering and Rady School of Management. Kumar is excited at the prospect of taking advantage of all that the IGE Technology Accelerator has to offer. "For us, it's strategically perfect," said Kumar, referring to the $50,000 funding for prototype improvements, the focus on prototype testing with a strategic partner, and the entrepreneurship mentoring. Kumar is confident in the team's innovations, which includes the ability to replace coin batteries with thin, stretchable batteries. Making the right strategic moves now is critical for commercialization success. "It's now about making sure our energies are focused in the right direction," said Kumar. In addition to the IGE Technology Accelerator, the team was also recently selected to participate in the NSF Innovation-Corps (I-Corps) program at UC San Diego, also administered by the Institute for the Global Entrepreneur. One of the key tenets of the I-Corps program is helping startup teams validate their target markets and business models early in the commercialization process. Through NSF I-Corps, for example, Kumar has already started interviewing potential customers which has helped the team better focus their commercialization strategy. Through these programs, Kumar is focused on leading the team through a series of milestones in order to best position their innovations to refine "both what to build and who to build it for," he said.


Patent
Sustainable Power | Date: 2017-06-07

The invention concern methods for converting carbonaceous feedstock slurry into synthetic fuel gas comprising: (a) introducing a carbonaceous feed stock slurry into a first reaction vessel via a continuous feed; (b) converting said carbonaceous feed stock slurry to a carbon char slurry comprising carbon char, and water by allowing said carbonaceous feed stock slurry to have a residency time of between 5 and 30 minutes in said first reaction vessel, said carbonaceous feed stock slurry being heated to a temperature of between about 260 to about 320 C at a pressure such that water does not flash to steam.


News Article | September 19, 2016
Site: www.materialstoday.com

Nanoengineers at the University of California, San Diego, in collaboration with the Materials Project at Lawrence Berkeley National Laboratory (Berkeley Lab), have created the world’s largest database of elemental crystal surfaces and shapes to date. Dubbed Crystalium, this new open-source database can help researchers design new materials for technologies in which surfaces and interfaces play an important role, such as fuel cells, catalytic converters in cars, computer microchips, nanomaterials and solid-state batteries. “This work is an important starting point for studying the material surfaces and interfaces, where many novel properties can be found. We’ve developed a new resource that can be used to better understand surface science and find better materials for surface-driven technologies,” said Shyue Ping Ong, a nanoengineering professor at UC San Diego and senior author of the study. For example, fuel cell performance is partly influenced by the reaction of molecules such as hydrogen and oxygen on the surfaces of metal catalysts. While interfaces between the electrodes and electrolyte in a rechargeable lithium-ion battery host a variety of chemical reactions that can limit the battery’s performance. The work in this study will be useful for these applications, said Ong, who is also part of a larger effort by the UC San Diego Sustainable Power and Energy Center to design better battery materials. “Researchers can use this database to figure out which elements or materials are more likely to be viable catalysts for processes like ammonia production or making hydrogen gas from water,” said Richard Tran, a nanoengineering PhD student in Ong’s Materials Virtual Lab and the study’s first author. The work, published in a paper in Scientific Data, provides the surface energies and equilibrium crystal shapes of more than 100 polymorphs of 72 elements in the periodic table. Surface energy describes the stability of a surface; it is a measure of the excess energy of atoms on the surface relative to those in the bulk material. Knowing surface energies is useful for designing materials that perform their functions primarily on their surfaces, like catalysts and nanoparticles. The surface energies of some elements in their crystal form have been measured experimentally, but this is not a trivial task. It involves melting the crystal, measuring the resulting liquid’s surface tension at the melting temperature, then extrapolating that value back to room temperature. The process also requires that the sample have a clean surface, which is challenging because other atoms and molecules (like oxygen and water) can easily adsorb to the surface and modify the surface energy. Surface energies obtained by this method are averaged values that lack the facet-specific resolution that is necessary for design, Ong said. “This is one of the areas where the ’virtual laboratory’ can create the most value – by allowing us to precisely control the models and conditions in a way that is extremely difficult to do in experiments.” Also, the surface energy is not just a single number for each crystal, because it depends on the crystal’s orientation. “A crystal is a regular arrangement of atoms. When you cut a crystal in different places and at different angles, you expose different facets with unique arrangements of atoms,” explained Ong. To carry out this ambitious project, Ong and his team developed highly sophisticated automated workflows to calculate surface energies from first principles. These workflows are built on the popular open-source Python Materials Genomics library and FireWorks workflow codes of the Materials Project, which were co-authored by Ong. “The techniques for calculating surface energies have been known for decades. The major accomplishment is the codification of how to generate surface models and run these complex calculations in a robust and efficient manner,” Tran said. The software code developed by the team for generating surface models has already been extended by others to study substrates and interfaces. Powerful supercomputers at the San Diego Supercomputer Center and the National Energy Research Scientific Computing Center at the Lawrence Berkeley National Lab were used for the calculations. Ong’s team also worked with researchers from the Berkeley Lab’s Materials Project to develop and construct Crystalium’s website. Co-founded and directed by Berkeley Lab scientist Kristin Persson, the Materials Project is a Google-like database of material properties calculated by supercomputers. “The Materials Project was designed to be an open and accessible tool for scientists and engineers to accelerate materials innovation,” Persson said. “In five years, it has attracted more than 20,000 users working on everything from batteries to photovoltaics to thermoelectrics, and it’s extremely gratifying to see scientists like Ong providing lots of high quality computed data of high interest and making it freely available and easily accessible to the public.” The researchers pointed out that their database is the most extensive collection of calculated surface energies for elemental crystalline solids to date. Compared to previous compilations, Crystalium contains surface energies for far more elements, including both metals and non-metals, and for more facets in each crystal. The elements that have been excluded from their calculations are gases and radioactive elements. Notably, Ong and his team have validated their calculated surface energies using those derived from experiments, and the values are in excellent agreement. Moving forward, the team will work on expanding the scope of the database beyond single elements to multi-element compounds like alloys, which are made of two or more different metals, and binary oxides, which are made of oxygen and one other element. Efforts are also underway to study the effect of common adsorbates, such as hydrogen, on surface energies, which is key to understanding the stability of surfaces in aqueous media. “As we continue to build this database, we hope that the research community will see it as a useful resource for the rational design of target surface or interfacial properties,” said Ong, This story is adapted from material from the University of California, San Diego, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.


News Article | September 14, 2016
Site: www.cemag.us

Nanoengineers at the University of California San Diego, in collaboration with the Materials Project at Lawrence Berkeley National Laboratory (Berkeley Lab), have created the world’s largest database of elemental crystal surfaces and shapes to date. Dubbed Crystalium, this new open-source database can help researchers design new materials for technologies in which surfaces and interfaces play an important role, such as fuel cells, catalytic converters in cars, computer microchips, nanomaterials, and solid-state batteries. “This work is an important starting point for studying the material surfaces and interfaces, where many novel properties can be found. We’ve developed a new resource that can be used to better understand surface science and find better materials for surface-driven technologies,” says Shyue Ping Ong, a nanoengineering professor at UC San Diego and senior author of the study. For example, fuel cell performance is partly influenced by the reaction of molecules such as hydrogen and oxygen on the surfaces of metal catalysts. Also, interfaces between the electrodes and electrolyte in a rechargeable lithium-ion battery host a variety of chemical reactions that can limit the battery’s performance. The work in this study is useful for these applications, said Ong, who is also part of a larger effort by the UC San Diego Sustainable Power and Energy Center to design better battery materials. “Researchers can use this database to figure out which elements or materials are more likely to be viable catalysts for processes like ammonia production or making hydrogen gas from water,” says Richard Tran, a nanoengineering PhD student in Ong’s Materials Virtual Lab and the study’s first author. Tran did this work while he was an undergraduate at UC San Diego. The work, published in the journal Scientific Data, provides the surface energies and equilibrium crystal shapes of more than 100 polymorphs of 72 elements in the periodic table. Surface energy describes the stability of a surface; it is a measure of the excess energy of atoms on the surface relative to those in the bulk material. Knowing surface energies is useful for designing materials that perform their functions primarily on their surfaces, like catalysts and nanoparticles. The surface energies of some elements in their crystal form have been measured experimentally, but this is not a trivial task. It involves melting the crystal, measuring the resulting liquid’s surface tension at the melting temperature, then extrapolating that value back to room temperature. This process also requires that the sample have a clean surface, which is challenging because other atoms and molecules (like oxygen and water) can easily adsorb to the surface and modify the surface energy. Surface energies obtained by this method are averaged values that lack the facet-specific resolution that is necessary for design, Ong says. “This is one of the areas where the ’virtual laboratory’ can create the most value — by allowing us to precisely control the models and conditions in a way that is extremely difficult to do in experiments.” Also, the surface energy is not just a single number for each crystal because it depends on the crystal’s orientation. “A crystal is a regular arrangement of atoms. When you cut a crystal in different places and at different angles, you expose different facets with unique arrangements of atoms,” explains Ong, who teaches the course NANO106 — Crystallography of Materials at UC San Diego. To carry out this ambitious project, Ong and his team developed highly sophisticated automated workflows to calculate surface energies from first principles. These workflows are built on the popular open-source Python Materials Genomics library and FireWorks workflow codes of the Materials Project, which were co-authored by Ong. “The techniques for calculating surface energies have been known for decades. The major accomplishment is the codification of how to generate surface models and run these complex calculations in a robust and efficient manner,” Tran says. The surface model generation software code developed by the team has already been extended by others to study substrates and interfaces. Powerful supercomputers at the San Diego Supercomputer Center and the National Energy Research Scientific Computing Center at the Lawrence Berkeley National Lab were used for the calculations. Ong’s team worked with researchers from the Berkeley Lab’s Materials Project to develop and construct Crystalium’s website. Co-founded and directed by Berkeley Lab scientist Kristin Persson, the Materials Project is a Google-like database of material properties calculated by supercomputers. “The Materials Project was designed to be an open and accessible tool for scientists and engineers to accelerate materials innovation,” Persson says. “In five years, it has attracted more than 20,000 users working on everything from batteries to photovoltaics to thermoelectrics, and it’s extremely gratifying to see scientists like Ong providing lots of high quality computed data of high interest and making it freely available and easily accessible to the public.” The researchers pointed out that their database is the most extensive collection of calculated surface energies for elemental crystalline solids to date. Compared to previous compilations, Crystalium contains surface energies for far more elements, including both metals and non-metals, and for more facets in each crystal. The elements that have been excluded from their calculations are gases and radioactive elements. Notably, Ong and his team have validated their calculated surface energies with those from experiments, and the values are in excellent agreement. Moving forward, the team will work on expanding the scope of the database beyond single elements to multi-element compounds like alloys, which are made of two or more different metals, and binary oxides, which are made of oxygen and one other element. Efforts are also underway to study the effect of common adsorbates, such as hydrogen, on surface energies, which is key to understanding the stability of surfaces in aqueous media. “As we continue to build this database, we hope that the research community will see it as a useful resource for the rational design of target surface or interfacial properties,” says Ong.


Patent
Sustainable Power | Date: 2014-02-26

A system for gasifying a carbonaceous feedstock, such as municipal waste, to generate power includes a devolatilization reactor that creates char from the feedstock and a gasifier that creates a product gas from both the char and from volatiles released when devolatilizing the feedstock. The product gas is reacted in a fuel cell to create electrical energy and process heat. The process heat is used to heat the devolatilization reactor and the gasifier. The gasifier comprises a plurality of configurable circuits that can each be tuned to meet the individual needs of the char material being gasified.


Patent
Sustainable Power | Date: 2015-02-09

This disclosure relates to a system and method for controlling a carbonaceous feedstock into a devolatilization reactor. The system includes a control valve system for modulating slurry. The control valve system includes a valve, an actuator, and a position controller. The valve includes a flow restrictor and a seat. The valve may be configured to control the flow of the slurry, wherein when the flow restrictor is engaged with the seat, the valve is in a close position, and when the flow restrictor is not engaged with the seat, the valve is in an open position. The actuator may be configured to control opening and closing of the valve. The actuator may be coupled to the position controller. The position controller may be configured to determine the position of the actuator. The seat may be configured to support the flow restrictor.


Patent
Sustainable Power | Date: 2014-12-15

The present disclosure relates to a system and method for pumping a feedstock slurry through a device. The system includes a pressure pump, a first sensor, a second sensor, a controller, and a control valve. The pressure pump includes a plunger configured to pressurize the slurry to a first pressure prior to the slurry entering the device. The first sensor is configured to sense a second pressure of the slurry entering the device. The second sensor is configured to sense the position of the plunger. The controller is configured to determine a change of position of the plunger based on the sensed position of the plunger and to control the movement of the plunger by setting a plunger mode based on the second pressure of the slurry and the change of position of the plunger. The control valve is configured to control the flow rate of the slurry through the device.


Patent
Sustainable Power | Date: 2014-12-12

This disclosure relates to a system and method for devolatilizing a carbonaceous feedstock. The system includes a devolatilization reactor having a unit shell, at least one tube bundle, a pump, and a control valve. The unit shell is configured to allow a heating fluid to flow within. The at least one tube bundle is configured to allow the feedstock to flow within the tube bundle and further configured to be positioned at least partially within the unit shell. The tube bundle comprises at least one tube and at least one tube bend. The at least one tube bend is disposed external to the unit shell. The pump is configured to pump the feedstock into the at least one tube bundle. The control valve is configured to control the flow rate of feedstock into the at least one tube bundle.

Loading Sustainable Power collaborators
Loading Sustainable Power collaborators