Time filter

Source Type

Li Q.,Sustainable Energy Laboratory | Li Q.,Hubei University | Zhou C.,Sustainable Energy Laboratory | Zhou C.,Hubei University | And 7 more authors.
Journal of Materials Chemistry A | Year: 2015

Prohibiting lithium polysulfides from being dissolved to electrolyte is the most critical challenge for pursuing high-performance Li/S batteries. Taking full advantage of interactions between polysulfides and functional groups of third-party additives has been proven to be an efficient strategy. In the present work, we selected DNA to decorate CMK-3/S cathodes. The -P=O and =N- sites of the constituent deoxyribonucleotides of DNA are demonstrated to be capable of anchoring polysulfides through our DFT calculations. The experimental results show that adding a small amount of DNA into the CMK-3/S composite significantly improved the cyclic performance. In particular, with a moderate DNA loading rate, the DNA post-loading procedure resulted in a discharge capacity of 771 mA h g-1 at 0.1 C after 200 cycles (70.7% retention of the initial), which yielded slightly improved performance as compared to the DNA pre-loading procedure. The proposed DNA decorating scheme may provide an applicable technical solution for developing high-performance Li/S batteries. © The Royal Society of Chemistry 2015.

Loading Sustainable Energy Laboratory collaborators
Loading Sustainable Energy Laboratory collaborators