Time filter

Source Type

Varlamov S.,University of New South Wales | Dore J.,University of New South Wales | Evans R.,Suntech Research and Development Australia | Ong D.,Suntech Research and Development Australia | And 14 more authors.
Solar Energy Materials and Solar Cells | Year: 2013

The paper presents a review of major features of the crystalline silicon on glass (CSG) technology, its achievements, limitations and challenges, and latest developments. CSG cells are fabricated by solid-state crystallisation (SPC) of 1.5-3.5 μm thick precursor diodes prepared by PECVD or ebeam evaporation followed by thermal annealing, hydrogen passivation and metallisation. The highest efficiency of 10.4% was demonstrated on a PECVD minimodule on textured borosilicate glass. The best performing ebeam-evaporated cells on planar glass reached 8.6% efficiency. CSG cells were also produced on low-cost soda-lime glass with 8.1% and 7.1% efficiencies on PECVD and ebeam material respectively. The performance of SPC CSG cells is limited to below 11% because high defect density in SPC material limits VOC and 1.5-3.5 μm cell thickness limits JSC. A breakthrough came about when thicker poly-Si films with low defect density on glass were prepared by liquid-phase crystallisation (Amkreutz, 2011) leading to development of the next generation, liquid-phase crystallised silicon on glass (LPCSG) solar cells. The best performing LPCSG cells are made by line-focus laser crystallisation of 10 μm thick ebeam silicon films on dielectric layer coated borosilicate glass. High material quality is confirmed by low defect density observed in TEM images, high carrier mobilities, and minority carrier lifetime longer than 260 ns. An intermediate dielectric layer can be SiCx, SiOx, SiN x or their combination and its properties are crucial for cell fabrication and performance. Dopants are introduced into the LPCSG cell absorber either during film deposition or diffused from doped intermediate layer during crystallisation. Light-trapping texture is formed on the exposed silicon surface by wet etching. A cell emitter is created by diffusion from spin-on-dopant source. Cell metallisation is based on point contacts between Al and cell emitter and absorber accessed through vias etched through cell layers to different depths. LPCSG cells outperformed CSG cells, with record VOC of 585 mV and efficiency of 11.7%. Efficiencies above 13% are achievable by improving light-coupling and contacting. © 2013 Elsevier B.V. All rights reserved.

Loading Suntech Research and Development Australia collaborators
Loading Suntech Research and Development Australia collaborators