Switzerland
Switzerland

Time filter

Source Type

Research and Markets has announced the addition of the "Membrane Technology for Liquid and Gas Separations" report to their offering. The combined U.S. market for membranes used in liquid and gas separations should reach $4.6 billion by 2021 from $3.4 billion in 2016 at a compound annual growth rate (CAGR) of 6.2%, from 2016 to 2021. This report is primarily a study of the U.S. market, but due to the international presence of many industry participants, global activities are included where appropriate. Values are given in U.S. dollars, and revenue is counted at the manufacturer level. Forecasts are in constant U.S. dollars and growth rates are compounded. Five-year projections are provided for market activity and value. Industry structure, technological trends, pricing considerations, R&D, government regulations, company profiles and competitive technologies are included in the study. Only industrial-scale membrane products will be evaluated. No consumer products (i.e., point-of-use water systems) are included in the analysis. 1: Introduction - Study Goal And Objectives - Reasons For Doing The Study - Intended Audience - Scope Of Report - Information Sources 3: Industry Overview - History Of The Industry - Membrane Technology - Methods Of Filtration 4: Membrane Technology Types - Reverse Osmosis - Nanofiltration - Ultrafiltration - Microfiltration - Electrochemical Processes - Value Of The U.S. Market For Membrane Products Used In Liquid Separations By Membrane Type - Gas Separation - Pervaporation 5: Applications For Membrane Technology - Potable Water Production - Wastewater Treatment - Process-Water Treatment - Food And Beverage - Pharmaceuticals And Biotechnology - Other Industrial Liquid Separations - Industrial Gas Separations - 3M Purification - Advantec MFS Inc. - Air Liquide - Air Products And Chemicals Inc. - Alfa Laval - Amfor Inc. - Applied Membranes Inc. - Applied Membrane Technology - Aquamarijn Microfiltration BV - Aquaporin A/S - Asahi Kasei - Astom Corp. - Atech Innovations Gmbh - Berghof Filtrations Und Anlagentechnik Gmbh - BWT Group - Cameron International - Cantel Medical - Clean Membranes Inc. - Compact Membrane Systems - Daicen Membrane Systems Ltd. - Donaldson Co. - DOW Chemical Co. - Econity - Eltron Research & Development - Entegris Inc. - Evonik Industries AG - Evoqua Water Technologies - General Electric - Gea Westfalia Separator Group GMBH - Genesis Fueltech Inc. - GKN Sinter Metals Filters GMBH - Graver Technologies - Honeywell International - HY9 Corp. - Hydration Technology Innovations - Hydrogenics Corp. - Hyflux Ltd. - Imbrium Systems Corp. - Imtex Membranes Corp. - INGE GMBH - Innovative Gas Systems (Igs) - ITM Power Plc - ITN Nanovation AG - Jiangsu Jiuwu Hi-Tech Co. Ltd. - Koch Membrane Systems - Kubota Corp. - Lanxess AG - Lg Water Solutions - Mantec Technical Ceramics Ltd. - Markel Corp. - Media And Process Technology - Meissner Filtration Products Inc. - Membrana-Charlotte - Mempore Corp. - Membrane Technology & Research Inc. - Membranes International - Memstar Technology Ltd. - Microdyn-Nadir Gmbh - Milliporesigma - Mitsubishi Rayon Co. Ltd. - Mmf Maxflow Membran Filtration Gmbh - Mtb Technologies - Nanoasis - Natrix Separations - New Logic International - NGK Insulators Ltd. - Nitto Denko Corp. - Novasep Process - Oasys - Pall Corp. - Parker Hannifin Corp. - PCA-Polymerchemie Altmeier Gmbh Und Pccell Gmbh - Pentair Inc. - Permionics - Pervatech BV - Pionetics Corp. - Polyan Gmbh - Polymem S.A. - Porifera Inc. - Porvair Plc - Praxair Inc. - Prime Water Bvba - PWN Technologies - QUA Group - Reb Research And Consulting - Saes Pure Gas - Sartorius - Separation Dynamics Inc. - Simpore - Sinomem Technology. Ltd. - Snowpure Llc - Specialty Silicone Products Inc. - Spectrum Laboratories - Spintek Systems - Suez Environnement - Sulzer Chemtech Ltd. - Sumitomo Electric Industries - Synder Filtration - Synkera Technologies Inc. - T3 Scientific Llc - TAMI Industries - Tianjin Motimo Membrane Technology Ltd. - Tokuyama Corp. - Toray Industries - Toyobo Co. Ltd. - Trisep Corp. - UBE Industries - Ultura GMBH - Veolia Water - Voltea - W.L. Gore & Associates - Xylem - Yuasa Membrane Systems Co. Ltd. For more information about this report visit http://www.researchandmarkets.com/research/xwscxg/membrane


Dublin, Dec. 15, 2016 (GLOBE NEWSWIRE) -- Research and Markets has announced the addition of the "Membrane Technology for Liquid and Gas Separations" report to their offering. The combined U.S. market for membranes used in liquid and gas separations should reach $4.6 billion by 2021 from $3.4 billion in 2016 at a compound annual growth rate (CAGR) of 6.2%, from 2016 to 2021. This report is primarily a study of the U.S. market, but due to the international presence of many industry participants, global activities are included where appropriate. Values are given in U.S. dollars, and revenue is counted at the manufacturer level. Forecasts are in constant U.S. dollars and growth rates are compounded. Five-year projections are provided for market activity and value. Industry structure, technological trends, pricing considerations, R&D, government regulations, company profiles and competitive technologies are included in the study. Only industrial-scale membrane products will be evaluated. No consumer products (i.e., point-of-use water systems) are included in the analysis. Key Topics Covered: 1: Introduction - Study Goal And Objectives - Reasons For Doing The Study - Intended Audience - Scope Of Report - Information Sources 2: Executive Summary 3: Industry Overview - History Of The Industry - Membrane Technology - Methods Of Filtration 4: Membrane Technology Types - Reverse Osmosis - Nanofiltration - Ultrafiltration - Microfiltration - Electrochemical Processes - Value Of The U.S. Market For Membrane Products Used In Liquid Separations By Membrane Type - Gas Separation - Pervaporation 5: Applications For Membrane Technology - Potable Water Production - Wastewater Treatment - Process-Water Treatment - Food And Beverage - Pharmaceuticals And Biotechnology - Other Industrial Liquid Separations - Industrial Gas Separations 6: Patent Survey - Patents By Application - Patents By Company 7: Industry Structure - Mergers And Acquisitions - Company Profiles - 3M Purification - Advantec MFS Inc. - Air Liquide - Air Products And Chemicals Inc. - Alfa Laval - Amfor Inc. - Applied Membranes Inc. - Applied Membrane Technology - Aquamarijn Microfiltration BV - Aquaporin A/S - Asahi Kasei - Astom Corp. - Atech Innovations Gmbh - Berghof Filtrations Und Anlagentechnik Gmbh - BWT Group - Cameron International - Cantel Medical - Clean Membranes Inc. - Compact Membrane Systems - Daicen Membrane Systems Ltd. - Donaldson Co. - DOW Chemical Co. - Econity - Eltron Research & Development - Entegris Inc. - Evonik Industries AG - Evoqua Water Technologies - General Electric - Gea Westfalia Separator Group GMBH - Genesis Fueltech Inc. - GKN Sinter Metals Filters GMBH - Graver Technologies - Honeywell International - HY9 Corp. - Hydration Technology Innovations - Hydrogenics Corp. - Hyflux Ltd. - Imbrium Systems Corp. - Imtex Membranes Corp. - INGE GMBH - Innovative Gas Systems (Igs) - ITM Power Plc - ITN Nanovation AG - Jiangsu Jiuwu Hi-Tech Co. Ltd. - Koch Membrane Systems - Kubota Corp. - Lanxess AG - Lg Water Solutions - Mantec Technical Ceramics Ltd. - Markel Corp. - Media And Process Technology - Meissner Filtration Products Inc. - Membrana-Charlotte - Mempore Corp. - Membrane Technology & Research Inc. - Membranes International - Memstar Technology Ltd. - Microdyn-Nadir Gmbh - Milliporesigma - Mitsubishi Rayon Co. Ltd. - Mmf Maxflow Membran Filtration Gmbh - Mtb Technologies - Nanoasis - Natrix Separations - New Logic International - NGK Insulators Ltd. - Nitto Denko Corp. - Novasep Process - Oasys - Pall Corp. - Parker Hannifin Corp. - PCA-Polymerchemie Altmeier Gmbh Und Pccell Gmbh - Pentair Inc. - Permionics - Pervatech BV - Pionetics Corp. - Polyan Gmbh - Polymem S.A. - Porifera Inc. - Porvair Plc - Praxair Inc. - Prime Water Bvba - PWN Technologies - QUA Group - Reb Research And Consulting - Saes Pure Gas - Sartorius - Separation Dynamics Inc. - Simpore - Sinomem Technology. Ltd. - Snowpure Llc - Specialty Silicone Products Inc. - Spectrum Laboratories - Spintek Systems - Suez Environnement - Sulzer Chemtech Ltd. - Sumitomo Electric Industries - Synder Filtration - Synkera Technologies Inc. - T3 Scientific Llc - TAMI Industries - Tianjin Motimo Membrane Technology Ltd. - Tokuyama Corp. - Toray Industries - Toyobo Co. Ltd. - Trisep Corp. - UBE Industries - Ultura GMBH - Veolia Water - Voltea - W.L. Gore & Associates - Xylem - Yuasa Membrane Systems Co. Ltd. For more information about this report visit http://www.researchandmarkets.com/research/s5fpvr/membrane


Costa L.I.,ETH Zurich | Costa L.I.,Sulzer Chemtech Ltd. | Storti G.,ETH Zurich | Luscher B.,Robert Bosch GmbH | And 3 more authors.
Journal of Hydrologic Engineering | Year: 2012

Acoustic discharge measurement devices (ADM) based on transit time measurements are widely used to measure water flow rates in channels and closed conduits for hydropower applications. In addition to making velocity and discharge measurements, the ADM simultaneously records the speed of sound and the attenuation of the acoustic pulse through the water-sediment mixture. This information can be used to estimate characteristics of the suspension such as the volume fraction of the sediment. Such information is crucial in hydropower plants because of the negative effects solid particles can have on the equipment. In this work, the Atkinson-Kytömaa model for monodisperse particles is applied to analyze the effect of solid particles and other operating parameters on the sound speed and attenuation in water suspensions. This model has been selected because it is suitable for the interested range of applications. The model has been validated by measurements with different particle material (glass, quartz, calcium carbonate), size, size distribution, shape, and concentration. Moreover, the sensitivity of the model to the particle parameters has been investigated and the critical parameters for monitoring applications have been identified. © 2012 American Society of Civil Engineers.


Dupuy P.M.,Norwegian University of Science and Technology | Jakobsen H.A.,Norwegian University of Science and Technology | Fernandino M.,Norwegian University of Science and Technology | Svendsen H.F.,Norwegian University of Science and Technology | Gaebler A.,Sulzer Chemtech. Ltd.
Proceedings of the Annual Offshore Technology Conference | Year: 2010

Conference Complete computational models that can be trusted at high pressures will enable a more accurate prediction of high pressure separation performance, valuable to vendors that design and supply separation equipment to the industry. The Population Balance Equation (PBE) is a promising modeling tool because it can simulate different physics for each droplet size coupled with CFD. This work discusses how to incorporate information on droplet to wall deposition into this framework. Droplet-wall collision experiments have been run at pressures up to 100 bars. The results are used as deposition closure laws in the PBE. A practical example is given as application note where the change in efficiency due to the bouncing from the wall leads to a variation in the efficiency of one order of magnitude in the Stokes number. Copyright 2010, Offshore Technology.

Loading Sulzer Chemtech Ltd. collaborators
Loading Sulzer Chemtech Ltd. collaborators