Struttura Semplice Virologia Molecolare

Pavia, Italy

Struttura Semplice Virologia Molecolare

Pavia, Italy

Time filter

Source Type

Colombo A.A.,Instituto Of Ematologia | Giorgiani G.,Struttura Complessa di Ematologia ed Oncologia Pediatrica | Rognoni V.,Struttura Semplice Virologia Molecolare | Furione M.,Struttura Semplice Virologia Molecolare | And 3 more authors.
BMC Infectious Diseases | Year: 2012

Background: Human cytomegalovirus (HCMV) infection of the central nervous system (CNS) is a rare but life threatening condition which may follow hematopoietic stem cell transplantation. Diagnosis, monitoring and treatment approaches rely on anecdotal reports.Case presentations: The different outcomes of HCMV CNS disease in an adult and a pediatric T-cell depleted hematopoietic stem cell transplant (HSCT) recipient are reported. In the first case, HCMV encephalitis emerged in the context of simultaneous impairment of the T- and B-cell immunity. Antiviral treatment only reduced viral load in peripheral blood and the patient died. In the second case, an HCMV radiculopathy was observed and antiviral treatment was adjusted on the basis of intrathecal drug level. In addition, donor HCMV-specific cytotoxic T lymphocytes (CTLs) were infused. Viral load in the CNS decreased and the patient recovered from the acute event. In neither case were drug-resistant HCMV variants observed in blood or CNS samples.Conclusions: T-cell depleted HSCT appears a predisposing condition for CNS HCMV infection since never observed in other HSCT recipients at our center in the last 15 years. Intensive diagnostic approaches and timely aggressive combination treatments might improve clinical outcome in these patients. © 2012 Colombo et al.; licensee BioMed Central Ltd.


Lilleri D.,Laboratori Sperimentali Of Ricerca | Gerna G.,Laboratori Sperimentali Of Ricerca | Zelini P.,Struttura Semplice Virologia Molecolare | Chiesa A.,Struttura Semplice Virologia Molecolare | And 4 more authors.
PLoS ONE | Year: 2012

In allogeneic hematopoietic stem-cell transplantation (HSCT) recipients, outcome of human cytomegalovirus (HCMV) infection results from balance between viral load/replication and pathogen-specific T-cell response. Using a cut-off of 30,000 HCMV DNA copies/ml blood for pre-emptive therapy and cut-offs of 1 and 3 virus-specific CD4+ and CD8+ T cells/μl blood for T-cell protection, we conducted in 131 young patients a prospective 3-year study aimed at verifying whether achievement of such immunological cut-offs protects from HCMV disease. In the first three months after transplantation, 55/89 (62%) HCMV-seropositive patients had infection and 36/55 (65%) were treated pre-emptively, whereas only 7/42 (17%) HCMV-seronegative patients developed infection and 3/7 (43%) were treated. After 12 months, 76 HCMV-seropositive and 9 HCMV-seronegative patients (cumulative incidence: 90% and 21%, respectively) displayed protective HCMV-specific immunity. Eighty of these 85 (95%) patients showed spontaneous control of HCMV infection without additional treatment. Five patients after reaching protective T-cell levels needed pre-emptive therapy, because they developed graft-versus-host disease (GvHD). HSCT recipients reconstituting protective levels of HCMV-specific T-cells in the absence of GvHD are no longer at risk for HCMV disease, at least within 3 years after transplantation. The decision to treat HCMV infection in young HSCT recipients may be taken by combining virological and immunological findings. © 2012 Lilleri et al.


PubMed | Italy Institute for Research in Biomedicine, Struttura Complessa Ostetricia e Ginecologia, Struttura Semplice Virologia Molecolare and Laboratori Sperimentali Of Ricerca
Type: Comparative Study | Journal: The Journal of general virology | Year: 2015

The comparative long-term kinetics of human cytomegalovirus (HCMV) load and HCMV-specific antibody responses in the immunocompetent and immunocompromised solid-organ transplanted host during primary HCMV infection was investigated. In total, 40 immunocompetent subjects and 17 transplanted patients were examined for viral load as well as for IgG antibody responses to HCMV glycoproteins gH/gL/pUL128L, gH/gL and gB, and neutralizing antibodies in ARPE-19 epithelial cells and human fibroblasts. In parallel, the CD4(+) and CD8(+) HCMV-specific T-cell responses were determined by cytokine flow cytometry. Transplanted patients reached significantly higher viral DNA peaks, which persisted longer than in immunocompetent subjects. The ELISA-IgG responses to the pentamer, gH/gL and gB were significantly higher in primary infections of the immunocompetent until six months after onset, with the two antibody levels then overlapping from six to 12 months. Antibody levels neutralizing infection of epithelial cells were significantly higher in transplanted patients after six months, persisting for up to a year after transplantation. This trend was not observed for antibodies neutralizing infection of human fibroblasts, which showed higher titres in the immunocompetent over the entire one-year follow-up. In conclusion, in immunocompromised patients the viral load peak was much higher, while the neutralizing antibody response exceeded that detected in the immunocompetent host starting six months after onset of follow-up, often concomitantly with a lack of specific CD4(+) T cells. In this setting, the elevated antibody response occurred in the presence of differentiated follicular helper T cells in the blood, which decreased in number as did antibody titres upon reappearance of HCMV-specific CD4(+) T cells.


Gerna G.,Laboratori Sperimentali Of Ricerca | Lilleri D.,Laboratori Sperimentali Of Ricerca | Lilleri D.,Institute for Research in Biomedicine | Fornara C.,Laboratori Sperimentali Of Ricerca | And 5 more authors.
Journal of General Virology | Year: 2015

The comparative long-term kinetics of human cytomegalovirus (HCMV) load and HCMV-specific antibody responses in the immunocompetent and immunocompromised solid-organ transplanted host during primary HCMV infection was investigated. In total, 40 immunocompetent subjects and 17 transplanted patients were examined for viral load as well as for IgG antibody responses to HCMV glycoproteins gH/gL/pUL128L, gH/gL and gB, and neutralizing antibodies in ARPE-19 epithelial cells and human fibroblasts. In parallel, the CD4+ and CD8+ HCMV-specific T-cell responses were determined by cytokine flow cytometry. Transplanted patients reached significantly higher viral DNA peaks, which persisted longer than in immunocompetent subjects. The ELISA-IgG responses to the pentamer, gH/gL and gB were significantly higher in primary infections of the immunocompetent until six months after onset, with the two antibody levels then overlapping from six to 12 months. Antibody levels neutralizing infection of epithelial cells were significantly higher in transplanted patients after six months, persisting for up to a year after transplantation. This trend was not observed for antibodies neutralizing infection of human fibroblasts, which showed higher titres in the immunocompetent over the entire one-year followup. In conclusion, in immunocompromised patients the viral load peak was much higher, while the neutralizing antibody response exceeded that detected in the immunocompetent host starting six months after onset of follow-up, often concomitantly with a lack of specific CD4+ T cells. In this setting, the elevated antibody response occurred in the presence of differentiated follicular helper T cells in the blood, which decreased in number as did antibody titres upon reappearance of HCMV-specific CD4+ T cells. © 2015 The Authors.


Bruno F.,Laboratori Sperimentali Of Ricerca | Fornara C.,Laboratori Sperimentali Of Ricerca | Zelini P.,Laboratori Sperimentali Of Ricerca | Furione M.,Struttura Semplice Virologia Molecolare | And 7 more authors.
Journal of General Virology | Year: 2016

Analysis of human cytomegalovirus (HCMV) primary infection in immunocompetent (n=40) and immunocompromised transplant patients (n=20) revealed that the median peak antibody titre neutralizing infection of epithelial cells was 16-fold higher in immunocompromised patients. The mechanism of this finding was investigated by measuring: (i) HCMV DNAemia; (ii) HCMV neutralizing antibodies; (iii) ELISA IgG antibody titre to HCMV glycoprotein complexes gHgLpUL128L, gHgLgO and gB; and (iv) HCMV-specific (IFN-γ+) CD4+ and CD8+ T-cells. Circulating CXCR5+ CD4+ (memory T follicular helper – TFH-cells) were identified as activated TFH (ICOS+PD-1++CCR7lo) and quiescent cells. In the early stages of primary infection, activated TFH cells increased in number. Concomitantly, both neutralizing and IgG antibodies to HCMV glycoproteins reached a peak, followed by a plateau. A stop in antibody rise occurred upon appearance of HCMV-specific CD4+ T-cells, HCMV clearance and progressive reduction in activated TFH cells. The main differences between healthy and transplant patients were that the latter had a delayed DNA peak, a much higher DNA load and delayed activated TFH cells and antibody peaks. Similar events were observed in clinically severe HCMV reactivations of transplant patients. A preliminary analysis of the specificity of the activated TFH cell response to viral proteins showed a major response to the pentamer gHgLpUL128L and gB. In conclusion, in the absence of T-cell immunity, one of the first lines of defence, during primary infection, is conferred by antibodies produced through the interaction of TFH cells and B-cells of germinal centres, resulting in differentiation of B-cells into antibody producing plasma cells. © 2016 The Authors.

Loading Struttura Semplice Virologia Molecolare collaborators
Loading Struttura Semplice Virologia Molecolare collaborators