Entity

Time filter

Source Type


Malerba L.,Structural Materials Modelling and Microstructure Unit | Bonny G.,Structural Materials Modelling and Microstructure Unit | Terentyev D.,Structural Materials Modelling and Microstructure Unit | Zhurkin E.E.,Saint Petersburg State Polytechnic University | And 3 more authors.
Journal of Nuclear Materials | Year: 2013

Neutron irradiation produces evolving nanostructural defects in materials, that affect their macroscopic properties. Defect production and evolution is expected to be influenced by the chemical composition of the material. In turn, the accumulation of defects in the material results in microchemical changes, which may induce further changes in macroscopic properties. In this work we review the results of recent atomic-level simulations conducted in Fe-Cr alloys, as model materials for high-Cr ferritic-martensitic steels, to address the following questions: 1. Is the primary damage produced in displacement cascades influenced by the Cr content? If so, how? 2. Does Cr change the stability of radiation-produced defects? 3. Is the diffusivity of cascade-produced defects changed by Cr content? 4. How do Cr atoms redistribute under irradiation inside the material under the action of thermodynamic driving forces and radiation-defect fluxes? It is found that the presence of Cr does not influence the type of damage created by displacement cascades, as compared to pure Fe, while cascades do contribute to redistributing Cr, in the same direction as thermodynamic driving forces. The presence of Cr does change the stability of point-defects: the effect is weak in the case of vacancies, stronger in the case of self-interstitials. In the latter case, Cr increases the stability of self-interstitial clusters, especially those so small to be invisible to the electron microscope. Cr reduces also significantly the diffusivity of self-interstitials and their clusters, in a way that depends in a non-monotonic way on Cr content, as well as on cluster size and temperature; however, the effect is negligible on the mobility of self-interstitial clusters large enough to become visible dislocation loops. Finally, Cr-rich precipitate formation is favoured in the tensile region of edge dislocations, while it appears not to be influenced by screw dislocations; prismatic dislocation loops (typically produced under irradiation) tend to be decorated by Cr. Cr has also tendency to accumulate at grain boundaries, while it tends to deplete in the proximity of free surfaces (at least in the absence of oxygen) and voids. © 2013 Elsevier B.V. All rights reserved. Source


Terentyev D.,Structural Materials Modelling and Microstructure Unit | Bonny G.,Structural Materials Modelling and Microstructure Unit | Domain C.,Electricite de France | Monnet G.,Electricite de France | Malerba L.,Structural Materials Modelling and Microstructure Unit
Journal of Nuclear Materials | Year: 2013

A review of experimental results shows that the dependence on Cr content of radiation-induced strengthening in Fe-Cr alloys and ferritic/martensitic steels is peculiar, exhibiting an increase as soon as Cr is added, followed by a local maximum and then a local minimum. This dependence is to date unexplained. In this paper we try to rationalise it, by reviewing recent (published and unpublished) molecular dynamics simulations work, devoted to the investigation of several possible mechanisms of radiation strengthening in Fe-Cr. In particular, the following questions are addressed quantitatively: (i) Does Cr influence the glide of dislocations? If so, how? (ii) Does Cr influence the interaction between dislocations and radiation-produced defects? If so, why? The latter question involves also a study of the interaction of moving dislocations with experimentally observed Cr-enriched loops. We find that the fact of shifting from a loop-absorption (pure Fe) to a loop-non-absorption (Fe-Cr) regime, because of the Cr-enrichment of loops, contributes to explaining why Fe-Cr alloys harden more under irradiation than Fe. If, in addition, the existence of a large density of invisible and Cr-enriched loops is postulated, the origin of the effect becomes even more clear. Moreover, the different strength of 〈1 1 1a and 〈1 0 0a loops as obstacles to dislocations movement, depending on whether or not loop absorption can occur, might explain why radiation strengthening decreases between 2% and 9%Cr. The formation of α′ precipitates, on the other hand, explains why radiation strengthening increases again above 9%Cr. Altogether, these effects might explain the origin of the minimum of radiation-induced embrittlement at 9%Cr, as correlated to strengthening. © 2013 Elsevier B.V. All rights reserved. Source

Discover hidden collaborations