Structural Engineer

Padova, Italy

Structural Engineer

Padova, Italy
Time filter
Source Type

News Article | May 10, 2017

Optimum Seismic, Inc., Southern California’s leading seismic retrofit company, has been named the Exclusive Affinity/Preferred Vendor of the Apartment Association, California Southern Cities (AACSC) for earthquake retrofit engineering and construction, officials announced today. The designation distinguishes Optimum Seismic as a trusted leader in the industry with a team of professionals that has completed more than 1,900 projects throughout California. As AACSC’s preferred vendor, Optimum Seismic will partner with the organization on a series of educational seminars to help provide vital information to apartment owners regarding current and upcoming retrofit laws, applications and programs. Click here for a list of ongoing events and seminars. Upcoming seminars include: “AACSC strives to provide our members with the most up-to-date tools necessary to efficiently run their properties,” said Executive Director Johanna Cunningham. “We were impressed with the reputation, expertise and professionalism demonstrated by Optimum Seismic and look forward to them providing guidance to our members when it comes to navigating seismic issues that impact them and their properties.” A growing number of cities in Southern California are enacting ordinances that require earthquake retrofits of wood-framed, soft-story structures – a type of architecture commonly used for apartment buildings, with parking situated on the ground floor and dwelling units built above it. These buildings have structural weaknesses that can lead to collapse during earthquakes. “It makes good business sense to have these buildings retrofitted, particularly given the potential they have to fail in an earthquake,” said Cunningham. “Studies show that retrofits not only guard against building failure, but they add value to the property as well because they are safer.” Optimum Seismic President and Founder Ali Vahdani, a State of California Licensed Structural Engineer since 1984, said the upcoming seminars will provide valuable information needed for building owners to make informed decisions about their property. “It’s important that apartment owners educate themselves about their options regarding structural needs, costs, financing and project management,” Vahdani said. “These seminars will help shed light on the options available to building owners and the best approaches to getting the work done.” ABOUT APARTMENT ASSOCIATION, CALIFORNIA SOUTHERN CITIES The Apartment Association, California Southern Cities, is a nonprofit trade association created in Long Beach in 1924 to serve as the voice of the rental housing industry by helping to solve housing issues throughout southern Los Angeles County. The organization provides educational and advocacy services on behalf of its members. Visit ABOUT OPTIMUM SEISMIC Optimum Seismic, Inc., is the L.A. area’s leading retrofit company and AAGLA’s Preferred Supplier for earthquake retrofit engineering and construction. The company has more than 30 years of experience and has completed more than 1,600 retrofits throughout the state of California. For information, visit

Below K.,Douglas Consultants | Sarti F.,Structural Engineer
WCTE 2016 - World Conference on Timber Engineering | Year: 2016

The paper presents the design and modelling of Cathedral Hill 2, a 15-storey timber building, planned for construction in Canada. The building is a 59-metre tall office-use construction with an all-timber structure where the lateral-load-resisting system consists of segmented Pres-Lam walls. The paper firstly presents the design philosophy, and the motivations for the use of the Pres-Lam system, which was mainly driven by serviceability limit-state wind loading. The final part of the paper shows the verification of the building's dynamic behaviour using non-linear time-history analysis, showing that, although the lateral-load design is governed by serviceability limit-state wind deflections, earthquake demand must not be overlooked due to higher-mode amplifications.

Avci O.,Qatar University | Barsottelli M.,Structural Engineer
Journal of Performance of Constructed Facilities | Year: 2017

While the transportation system of the United States rapidly ages and expands, there is increasing demand for the demolition, replacement, modification, or rehabilitation of existing bridges; all of these actions require some degree of engineered deconstruction. In a 2013 report on American infrastructure a large number of bridges surveyed were reported to be structurally deficient or functionally obsolete, and many of the existing bridges have exceeded their 50-year design life. Although highway bridges have been deconstructed around the world for generations, there are few publications on the structural engineering aspects of the deconstruction process. This paper aims to shed light on the general nonexplosive deconstruction process by presenting aspects of a three-span continuous steel girder highway bridge example. General sequence, equipment, methods, economy, and engineering are discussed. The authors also focus on the role of structural engineers, as they can be a key factor in safe and economical deconstruction. © 2016 American Society of Civil Engineers.

Gross C.,Structural Engineer | Walker P.,University of Bath
Construction and Building Materials | Year: 2014

Hemp-lime is a natural, sustainable low carbon insulating material. It is formed from three main constituents: hemp shiv; lime based binder; and, water. Its use within the construction industry is a relatively recent development. In the UK hemp-lime is most widely used for solid wall insulation in conjunction with structural timber studwork, either cast in situ or more recently innovative prefabricated panels. Current design practice assumes that the hemp-lime does not contribute towards the structural capacity of the wall. Previous work by the authors has confirmed that hemp-lime significantly benefits vertical load bearing capacity of the timber studs. This paper presents research that has been undertaken to establish the enhancement hemp-lime provides to the in-plane racking strength of timber studwork framing. Laboratory testing was undertaken on a series of timber studwork frames both with and without hemp-lime. It was found that the hemp-lime significantly increases both the racking strength and stiffness. © 2014 Elsevier Inc. All rights reserved.

Morbiato T.,Structural Engineer | Vitaliani R.,University of Padua | Saetta A.,IUAV University of Venice
Computers and Structures | Year: 2011

The pedestrian-structure interaction is considered by developing a non-linear double pendulum model, representing the lateral walking of the pedestrian and the horizontal vibration mode of the structure. To understand the synchronization phenomenon, the two oscillators were considered in their phase spaces, and a ring-dynamics approach was applied. As synchronization occurs, pedestrian motion becomes in phase quadrature with a quarter-of-period in advance of the bridge motion: this ensures stability of walking conditions on a moving deck, but causes random cancellation of forces typical of an incoherent crowd. Correspondingly, the lateral force transmitted to the structure increases its value, approaching resonance conditions. © 2011 Elsevier Ltd. All rights reserved.

Paultre P.,Université de Sherbrooke | Eid R.,Sami Shamoon College of Engineering | Langlois Y.,Structural Engineer | Lvesque Y.,Group SM International
Journal of Structural Engineering | Year: 2010

This paper presents tests that were performed on square large-scale steel-fiber-reinforced high-strength concrete (HSC) columns under concentric compression loading. The experimental program was mainly designed to examine the effect of the volumetric steel-fiber ratio on the behavior of reinforced HSC large-scale elements subjected to axial compression loading. The test program was also designed to examine the combined confinement effect of steel fibers and transverse steel reinforcement. Thus, the test variables studied herein are the steel-fiber volumetric ratio and the volumetric ratio, yield strength, and spacing of the transverse steel ties. The results show that adding discrete fibers to HSC mixtures in reinforced concrete columns not only prevents the premature spalling of the concrete cover but also increases the strength and ductility of the axially loaded reinforced member. This behavior was predicted by the proposed fiber-reinforced concrete stress-strain model, which takes into account most of the parameters that influence confinement effectiveness: the concrete strength; the spacing, yield strength, volumetric ratio, and configuration of the transverse reinforcement; the distribution of the longitudinal reinforcement; and the diameter, length, shape, volumetric ratio, and frictional bond strength of the fibers. Predictions were found to be in good agreement with experimental results. © 2010 ASCE.

El Howary H.A.,Structural Engineer | Mehanny S.S.F.,Cairo University
Earthquake Engineering and Structural Dynamics | Year: 2011

A multi-level seismic vulnerability assessment of reinforced concrete moment frame buildings located in moderate seismic zones (0.25g) is performed on a set of ductile versions of low- to mid-rise two-dimensional moment frames. The study is illustrated through application to comparative trial designs of two (4- and 8-story) buildings adopting both space- and perimeter-framed approaches. All frames are dimensioned as per the emerging version of the seismic design code in Egypt. These new seismic provisions are in line with current European norms for seismic design of buildings. Code-compliant designs (CCD), as well as a proposed modified code design relaxing design drift demands for the investigated buildings, are examined to test their effectiveness and reliability. Applying nonlinear inelastic incremental dynamic analyses, fragility curves (FC) for the frames are developed corresponding to various code-specified performance levels. Code preset lower and upper bounds on design acceleration and drift, respectively, are also addressed along with their implications, if imposed, on the frames seismic performance and vulnerability. Annual spectral acceleration hazard curves for the case study frames are also generated. Estimates for mean annual frequency (MAF) of exceeding various performance levels are then computed through an integration process of the data resulting from the FC with the site hazard curves. The study demonstrates that the proposed design procedure relaxing design drift demands delivers more economic building designs relative to CCDs, yet without risking the global safety of the structure. The relaxed design technique suggested herein, even though scoring higher, as expected by intuition, MAF of exceeding various code-limiting performance levels expressed in terms of interstory drift ratios, still guarantees a reasonably acceptable actual margin against violating code limits for such levels. © 2010 John Wiley & Sons, Ltd.

Papastergiou D.,Structural Engineer | Lebet J.-P.,Ecole Polytechnique Federale de Lausanne
Journal of Constructional Steel Research | Year: 2014

This paper deals with the design method and the experimental verification of a new type of steel-concrete composite beam under static and fatigue loading. The connection is an alternative solution for steel-concrete composite bridges suitable for prefabrication and fast erection, while guaranteeing durability. The composite action of the beam is established through an innovative shear connection by adhesion, interlocking and friction. The resistance of the connection to longitudinal shear is based on the development of shear stresses in the confined interfaces that form the connection. The interfaces include a steel-cement grout interface and a rough concrete-cement grout interface. Confinement is provided by the reinforced concrete slab that encloses the connection. A composite beam was designed according to the design method for such type of composite beams in order to resist cyclic loading and to guarantee in the sequence its bearing capacity at ultimate limit state. The beam was initially subjected to cyclic loading and did not present signs of important damage after five million cycles. The damage on such type of connections is expressed by the development of a small residual slip in the interface which with the appropriate design stabilizes with the number of cycles. Finally the composite beam was statically loaded up to failure. The results show the capability of such a composite beam to develop its plastic moment at ultimate limit state. © 2013 Elsevier Ltd.

Mehanny S.S.F.,Cairo University | El Howary H.A.,Structural Engineer
Engineering Structures | Year: 2010

Building code restrictive seismic design provisions and building systems type and configuration have remarkable implications on seismic performance of reinforced concrete moment framed structures. Seismic assessment of ductile versions of low- to mid-rise moment frames located in moderate seismic zones is carried out through comparative trial designs of two (4- and 8-story) buildings adopting both space and perimeter framed approaches. Code-compliant designs, as well as a proposed modified code design relaxing design drift demands for the investigated buildings, are examined to test their effectiveness and reliability. Fragility curves for the frames are generated corresponding to various code-specified performance levels. Code preset lower or upper bounds on either design acceleration or drift, respectively, that would control the final design are also addressed along with their implications, if imposed, on the frames' seismic performance. The trial design study demonstrates that built-in static overstrength is generally larger for space frames than for perimeter frames, whereas the force reduction attributable to inelastic dynamic response differs from one frame type to the other for various investigated heights and for different target performance levels. Nonetheless, all trial designs are shown to meet the minimum performance implied by building code provisions but with varying margins. However, the study suggests that more consistent reliability for designed structures can be achieved by disaggregating the force reduction factor into its static and dynamic parts and that code default values of this factor for some building types would be better reduced for a more reliable performance. © 2010 Elsevier Ltd.

Carpenter J.,Structural Engineer | Zhou J.,Southern Illinois University at Edwardsville
ICSDEC 2012: Developing the Frontier of Sustainable Design, Engineering, and Construction - Proceedings of the 2012 International Conference on Sustainable Design and Construction | Year: 2013

Forty percent of the global energy consumption is related directly to commercial and residential buildings. Homeowners of energy inefficient housing have an opportunity to reduce energy consumption and to assist in mitigating climate change. This paper reports a study on retrofitting flat roofs of energy inefficient housing in St. Louis, MO. A life cycle analysis was conducted on a 120-year-old house to evaluate two design options: a green roof vs. a white roof (solar reflective paint). Both options were studied at a 10-year-of-roof- maintenance cycle. The study found that the green roof would require more retrofit embodied energy than that of the white roof because the green roof requires soil transportation, soil pan fabrication, roof joist retrofit kit, and the ceiling replacement, while the white roof requires only the manufactured paint. However, the green roof would still outperform the white roof over a 10-year period on total energy consumption. Furthermore, both options would provide energy savings over the no-retrofit option. © 2013 American Society of Civil Engineers.

Loading Structural Engineer collaborators
Loading Structural Engineer collaborators