Dallas, TX, United States
Dallas, TX, United States

Time filter

Source Type

Barve M.,Mary Crowley Cancer Research Centers | Wang Z.,Strike Bio Inc. | Kumar P.,Gradalis, Inc. | Jay C.M.,Strike Bio Inc. | And 14 more authors.
Molecular Therapy | Year: 2015

Stathmin1 (STMN1) is a microtubule modulator that is expressed in multiple cancers and correlates with poor survival. We previously demonstrated in vivo safety of bifunctional (bi) shRNA STMN1 bilamellar invaginated vesicle (BIV) and that systemic delivery correlated with antitumor activity. Patients with superficial advanced refractory cancer with no other standard options were entered into trial. Study design involved dose escalation (four patients/cohort) using a modified Fibonacci schema starting at 0.7 mg DNA administered via single intratumoral injection. Biopsy at baseline, 24/48 hours and resection 8 days after injection provided tissue for determination of cleavage product using next-generation sequencing (NGS) and reverse transcription quantitative polymerase chain reaction (RT-qPCR), 5′ RLM rapid amplification of cDNA ends (RACE) assay. Serum pharmacokinetics of circulating plasmid was done. Twelve patients were entered into three dose levels (0.7, 1.4, 7.0 mg DNA). No ≥ grade 3 toxic effects to drug were observed. Maximum circulating plasmid was detected at 30 seconds with less than 10% detectable in all subjects at 24 hours. No toxic effects were observed. Predicted cleavage product was detected by both NGS (n = 7/7 patients analyzed, cohorts 1, 2) and RLM RACE (n = 1/1 patients analyzed cohort 3). In conclusion, bi-shRNA STMN1 BIV is well tolerated and detection of mRNA target sequence-specific cleavage product confirmed bi-shRNA BIV mechanism of action. © 2015 The American Society of Gene & Cell Therapy.

PubMed | Strike Bio Inc and Gradalis, Inc.
Type: | Journal: Toxicological sciences : an official journal of the Society of Toxicology | Year: 2016

Stathmin-1 (STMN1) is a microtubule-destabilizing protein which is overexpressed in cancer. Its overexpression is associated with poor prognosis and also serves as a predictive marker to taxane therapy. We have developed a proprietary bi-functional shRNA (bi-shRNA) platform to execute RNA interference (RNAi)-mediated gene silencing and a liposome-carrier complex to systemically deliver the pbi-shRNA plasmids. In vitro and in vivo testing demonstrated efficacy and specificity of pbi-shRNA plasmid in targeting STMN1 (Phadke, A. P., Jay, C. M., Wang, Z., Chen, S., Liu, S., Haddock, C., Kumar, P., Pappen, B. O., Rao, D. D., Templeton, N. S., et al. (2011). In vivo safety and antitumor efficacy of bifunctional small hairpin RNAs specific for the human Stathmin 1 oncoprotein. DNA Cell Biol. 30, 715-726.). Biodistribution and toxicology studies in bio-relevant Sprague Dawley rats with pbi-shRNA STMN1 lipoplex revealed that the plasmid DNA was delivered to a broad distribution of organs after a single subcutaneous injection. Specifically, plasmid was detected within the first week using QPCR (threshold 50 copies plasmid/1 g genomic DNA) at the injection site, lung, spleen, blood, skin, ovary (limited), lymph nodes, and liver. It was not detected in the heart, testis or bone marrow. No plasmid was detected from any organ 30 days after injection. Treatment was well tolerated. Minimal inflammation/erythema was observed at the injection site. Circulating cytokine response was also examined by ELISA. The IL-6 levels were induced within 6h then declined to the vehicle control level 72h after the injection. TNF induction was transiently observed 4 days after the DNA lipoplex treatment. In summary, the pbi-shRNA STMN1 lipoplex was well tolerated and displayed broad distribution after a single subcutaneous injection. The pre-clinical data has been filed to FDA and the pbi-shRNA STMN1 lipoplex is being investigated in a phase I clinical study.

Strike Bio Inc and Baylor College of Medicine | Date: 2015-04-24

The present invention includes compositions and methods for making and using a RNAi capable of reducing expression of two or more genes, comprising: a first RNAi molecule that reduces the expression of a first target gene; a second RNAi molecule that reduces the expression of the first or a second target gene; and optionally a third RNAi molecule that reduces the expression of the first, the second, or a third target gene, wherein the RNAi molecules reduce the expression level of, e.g., mutated KRAS, SRC-3, EGFR, PIK3, NCOA3, or ERalpha1, and can be, e.g., miRNAs, shRNAs, or bifunctional shRNAs.

According to certain embodiments of the present invention, methods for modulating the production of sialic acid in a system are provided, which comprise providing the system with a wild-type GNE-encoding nucleic acid sequence. According to such embodiments, the system may comprise a cell, muscular tissue, or other desirable targets. Similarly, the present invention encompasses methods for producing wild-type GNE in a system that comprises a mutated endogenous GNE-encoding sequence. In other words, the present invention includes providing, for example, a cell or muscular tissue that harbors a mutated (defective) GNE-encoding sequence with a functional wild-type GNE encoding sequence.

The present invention includes compositions and methods for making and using a bifunctional shRNAs capable of reducing an expression of a K-ras gene, e.g., a mutated K-ras gene, wherein at least one target site sequence of the bifunctional RNA molecule is located within the K-ras gene and wherein the bifunctional RNA molecule is capable of activating a cleavage-dependent and a cleavage-independent RNA-induced silencing complex for reducing the expression level of K-ras.

Strike Bio Inc | Date: 2016-03-21

A method for designing a bi-shRNA expression cassette encoding a bi-shRNA comprising: selecting one or more target site sequences; providing a backbone sequence comprising a first and a second stem-loop structure, inserting a first passenger strand and a second passenger strand and providing for synthesis of the bi-shRNA expression cassette.

Loading Strike Bio Inc. collaborators
Loading Strike Bio Inc. collaborators