Stress Engineering Services

Houston, TX, United States

Stress Engineering Services

Houston, TX, United States
Time filter
Source Type

Matta L.,Stress Engineering Services
Pipeline Pigging and Integrity Management Conference 2017, Papers | Year: 2017

DURING HYDROSTATIC TESTING of pipelines, leaks in the test section will result in a loss of test pressure, and a reduction in water temperature during the test hold time will also typically result in a pressure decrease. This paper reports an analysis of the comparative effects of temperature, leakage, and trapped air on the pressure during hydrostatic testing. Equations were developed to quantify the effects of temperature changes and leakage rates on the pressure during hydrostatic testing. Additional analysis was performed to investigate the effect of trapped air in the system on the test pressure. By comparing the relative magnitudes of these factors for a given pipeline geometry, insight can be gained into the minimum size of a leak that can be reasonably detected using hydrostatic testing. The results of this analysis show that small leaks are most easily detected in short test sections with stable temperatures and when very little air remains trapped the piping. The magnitudes of pressure changes resulting from temperature variations and leaks depend on the starting temperatures and test pressures. The variations of the compressibility and the thermal expansion of the fluid are often neglected in test calculations, but can be important. The effect of temperature changes on the test pressure are minimized for cold temperature tests with water near 40°F, and increase as the test temperature increases. The presence of relatively small volumes of trapped gas can significantly affect the apparent compressibility of the test fluid. As a result, if a small leak is present, the pressure loss due to a leak may be less than expected. This effect becomes smaller at higher test pressures.

Alexander C.,Stress Engineering Services
Pipeline and Gas Journal | Year: 2017

Over the past 25 yr, the gas and liquid transmission pipeline industry has integrated composite repair systems into their integritymanagement programs. The introduction of these repair systems has been accompanied by extensive research efforts funded by both operators and composite repair companies well in excess of $15 million. An overview of advances in composite repair technology focused primarily on the gas and liquid transmission pipeline industry in the US is discussed. Several situational studies illustrating how composite materials can be used to reinforce several different types of anomalies in transmission pipeline systems are presented.

Agarwal P.,Stress Engineering Services | Manuel L.,University of Texas at Austin
Applied Ocean Research | Year: 2011

Design of an offshore wind turbine requires estimation of loads on its rotor, tower and supporting structure. These loads are obtained by time-domain simulations of the coupled aero-servo-hydro-elastic model of the wind turbine. Accuracy of predicted loads depends on assumptions made in the simulation models employed, both for the turbine and for the input wind and wave conditions. Currently, waves are simulated using a linear irregular wave theory that is not appropriate for nonlinear waves, which are even more pronounced in shallow water depths where wind farms are typically sited. The present study investigates the use of irregular nonlinear (second-order) waves for estimating loads on the support structure (monopile) of an offshore wind turbine. We present the theory for the irregular nonlinear model and incorporate it in the commonly used wind turbine simulation software, FAST, which had been developed by National Renewable Energy Laboratory (NREL), but which had the modeling capability only for irregular linear waves. We use an efficient algorithm for computation of nonlinear wave elevation and kinematics, so that a large number of time-domain simulations, which are required for prediction of long-term loads using statistical extrapolation, can easily be performed. To illustrate the influence of the alternative wave models, we compute loads at the base of the monopile of the NREL 5MW baseline wind turbine model using linear and nonlinear irregular wave models. We show that for a given environmental condition (i.e., the mean wind speed and the significant wave height), extreme loads are larger when computed using the nonlinear wave model. We finally compute long-term loads, which are required for a design load case according to the International Electrotechnical Commission guidelines, using the inverse first-order reliability method. We discuss a convergence criteria that may be used to predict accurate 20-year loads and discuss wind versus wave dominance in the load prediction. We show that 20-year long-term loads can be significantly higher when the nonlinear wave model is used. © 2011 Elsevier Ltd.

Alexander C.,Stress Engineering Services | Ochoa O.O.,Texas A&M University
Composite Structures | Year: 2010

In the last 15 years, glass fiber hoop reinforced composite systems emerged as an acceptable, successful method for repairing corroded and mechanically-damaged onshore pipelines where the primary load is internal pressure. The feasibility of extending these repairs to offshore pipes such as risers require a thorough understanding of the complex combined load profiles; overlay of significant tension, bending, internal and external pressure. Herein an innovative design based on integrated computational models and full-scale tests is presented to address the viability of reinstating capacity to offshore pipelines and risers. The experimental program was based on a collaborative test matrix developed with the participation of composite repair manufacturers. The outcome guided and led to an easily deployable carbon-fiber composite repair system which was based on limit analysis methods and strain-based design techniques. It is anticipated that the results of this program will foster future investigations by integrating operator's insight and in situ data gathering to extend composite repair for offshore needs. © 2009 Elsevier Ltd. All rights reserved.

McNeill S.,Stress Engineering Services
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) | Year: 2012

The modal identification framework known as Blind Modal Identification (BMID) has recently been developed, drawing on techniques from Blind Source Separation (BSS). Therein, a BSS algorithm known as Second Order Blind Identification (SOBI) was adapted to solve the Modal IDentification (MID) problem. One of the drawbacks of the technique is that the number of modes identified must be less than the number of sensors used to measure the vibration of the equipment or structure. In this paper, an extension of the BMID method is presented for the underdetermined case, where the number of sensors is less than the number of modes to be identified. The analytic signal formed from measured vibration data is formed and the Second Order Blind Identification of Underdetermined Mixtures (SOBIUM) algorithm is applied to estimate the complex-valued modes and modal response autocorrelation functions. The natural frequencies and modal damping ratios are then estimated from the corresponding modal auto spectral density functions using a simple Single Degree Of Freedom (SDOF), frequency-domain method. Theoretical limitations on the number of modes identified given the number of sensors are provided. The method is demonstrated using a simulated six DOF mass-spring-dashpot system excited by white noise, where displacement at four of the six DOF is measured. All six modes are successfully identified using data from only four sensors. The method is also applied to a more realistic simulation of ambient building vibration. Seven modes in the bandwidth of interest are successfully identified using acceleration data from only five DOF. In both examples, the identified modal parameters (natural frequencies, mode shapes, modal damping ratios) are compared to the analytical parameters and are demonstrated to be of good quality. Copyright © 2012 by ASME.

McNeill S.I.,Stress Engineering Services
Journal of Offshore Mechanics and Arctic Engineering | Year: 2012

Modal decomposition and reconstruction (MDR) of marine riser vortex induced vibration (VIV) is a technique where vibration is measured using accelerometers and/or angular rate sensors, the modal displacements are solved for and the stress and fatigue damage is reconstructed along the riser. Recent developments have greatly increased the accuracy and reliability of the method. However the computational burden is onerous due to stress time history reconstruction and rainflow cycle counting at every desired location along the riser. In addition, fully synchronous data are required to reconstruct the stress histories. Dirlik's method for obtaining rainflow damage for Gaussian random stress using only spectral information (four spectral automoments) has proven to be quite accurate with a significant reduction in computational effort. In this paper two spectral formulations of MDR are introduced. The first method is applicable when all the measured data are synchronous. In this method, spectral cross moments of the modal displacements are solved from the spectral cross moments of the measured data using basis vectors consisting of normal mode shapes. The spectral automoments of stress are obtained from the modal displacement cross moments and analytical stress mode shapes. Dirlik's method is then applied to obtain rainflow damage. The second method is a generalization of the first, where the measured data cross moments are only partially known. This method is applicable when measured data are partially synchronous or asynchronous. A numerical root-finding technique is employed to solve for the modal response cross moments. The method then proceeds in the same manner as the first. The spectral methods are applied to simulated VIV data of a full-scale deepwater riser and to Norwegian Deepwater Program (NDP) scale-model test data on a 38 m long slender riser. Comparisons of reconstructed fatigue damage versus simulated or measured damage indicate that the method is capable of estimating fatigue damage accurately for Gaussian VIV even when data are not fully synchronous. It is also shown that computational cost is greatly reduced. © 2012 American Society of Mechanical Engineers.

McNeill S.I.,Stress Engineering Services
Journal of Sound and Vibration | Year: 2016

An algorithm for nonparametric decomposition of a signal into the sum of short-time narrow-banded modes (components) is introduced. Specifically, the signal data is augmented with its Hilbert transform to obtain the analytic signal. Then the set of constituent amplitude and frequency modulated (AM-FM) analytic sinusoids, each with slowly varying amplitude and frequency, is sought. The method for obtaining the short-time narrow-banded modes is derived by minimizing an objective function comprised of three criteria: smoothness of the instantaneous amplitude envelope, smoothness of the instantaneous frequency and complete reconstruction of the signal data. A minimum of the objective function is approached using a sequence of suboptimal updates of amplitude and phase. The updates are intuitive, efficient and simple to implement. For a given mode, the amplitude and phase are extracted from the band-pass filtered residual (signal after the other modes are removed), where the band-pass filter is applied about the previous modal instantaneous frequency estimate. The method is demonstrated by application to random output-only vibration data and order tracking data. It is demonstrated that vibration modal responses can be estimated from single channel data and order tracking can be performed without measured tachometer data. © 2016 Elsevier Ltd.

McNeill S.I.,Stress Engineering Services
JVC/Journal of Vibration and Control | Year: 2012

In this paper a complex-valued formulation of the modal superposition equation is provided and shown to be equivalent to the original, real-valued Blind Modal IDentification (BMID) problem. The complex-valued variant involves the analytic form of the physical and modal responses. The formulation is shown to be more concise and straightforward than the original. It is noted that complex-valued mode shapes can be obtained using a complex version of the two-step Joint Approximate Diagonalization (JAD) algorithm. Using this approach the modal response pairing step of the original BMID method is eliminated. Since the development of the original BMID method, several new, one-step JAD algorithms have been devised. Many of the algorithms can be extended to identify complex mixing matrices. A complex version of the one-step JAD method known as the Weighted Exhaustive Diagonalization with Gauss itErations algorithm is utilized to solve for the complex mode shapes and modal responses. By using this simplified formulation, the whitening step is eliminated, as well as the modal response pairing step, which is necessary in the original BMID algorithm.Performance of the new Complex BMID (CBMID) algorithm is evaluated by application to synthesized data from a three-degrees-of-freedom system with complex modes, application to measured laboratory data on a structural frame and application to measured output-only data from the Heritage Court Tower building. It is seen that the CBMID method results in essentially the same estimates of modal responses, complex mode shapes, natural frequencies and modal damping compared to results from BMID. Furthermore, it is shown that modal parameters from BMID and CBMID are very consistent with those obtained from state-of-the-art methods, such as the Eigensystem Realization Algorithm and the covariance-driven Stochastic Subspace Identification method. © The Author(s) 2011 Reprints and permissions:

Stress Engineering Services | Date: 2016-01-19

A crack arrestor apparatus and method for making same by applying layers of a composite material of non-metallic fibers and resin around a length of pipe; the fibers generally aligned with the pipe circumference. The applied layers have a thicker portion in the middle and a thinner portion on the ends. Part of the pipe covered by the thicker portion is then yielded by application of radial force past the elastic limit of the pipe, thereby creating circumferential tension on the composite. At least a portion of the composite remains in circumferential tension upon release of the radial force. The residual stresses in the yielded metal pipe assist to arrest crack propagation. Thereby, the process to arrest a crack in a metal pipe includes maintaining circumferential tension in a composite residing around the pipe while maintaining compressive circumferential residual stress on the metal pipe covered by the composite.

Stress Engineering Services | Date: 2011-08-30

A method and system are provided to reconstruct vibration responses such as stress and fatigue damage at desired locations in a structure from a limited number of vibration measurements at a few locations in the structure. Vibration response measurements can be of any type, e.g. acceleration, angular velocity, strain, etc. The desired locations can be anywhere within the domain of the structure and may include the entire structural domain. Measured vibration responses may be of uniform type or combinations of different types.

Loading Stress Engineering Services collaborators
Loading Stress Engineering Services collaborators