Time filter

Source Type

Romsey, United Kingdom

Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2009.3.8 | Award Amount: 3.63M | Year: 2010

The detection of chemical or biological substances increasingly appears as an essential concern in order to prevent human or animal health and security related problems. Present analytical techniques are expensive and often require highly specialized staff and infrastructures. The principal need is to perform screening tests, which can be carried out in non-specialized infrastructures, e.g. Point of Care, schools and field, before unambiguous identification in a specialized laboratory. There is thus a need to develop a new detection system that has low-cost and is portable but at the same time offers high sensitivity, selectivity and multi-analyte detection from a sample containing various components (e.g. blood, serum, saliva, etc.).\n\nThe objective of P3SENS is to design, fabricate and validate a multichannel (50 or more) polymer photonic crystal based label-free disposable biosensor allowing for a positive/negative detection scheme of ultra small concentrations of analytes in solution (< 1 ng/mL). The biosensor will be encapsulated in a specifically designed microfluidic system in order to deliver the sample to the multiple sensing zones. The design of the biochip will allow it to be easily inserted in a compact measurement platform, usable by non-specialized practitioners outside of specialized laboratories for carrying simultaneous multi-analyte detection, delivering real-time monitoring, and with an assay duration that will not exceed a few tens of minutes.\n\nThe photonic chip proposed in this project will be based on polymer Photonic Crystal (PhC) micro-cavities coupled into a planar waveguide optical distribution circuit. The photonic chip will be fabricated with available fabrication technologies - and with an emphasis on low cost substrates (polymer) and fabrication processes (nano-imprint lithography). More generally, P3SENS will push forward the development of low cost disposable biochips based on photonics.

Agency: GTR | Branch: Innovate UK | Program: | Phase: Department of Trade & Industry | Award Amount: 323.34K | Year: 2006

Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

Agency: GTR | Branch: Innovate UK | Program: | Phase: Department of Trade & Industry | Award Amount: 954.69K | Year: 2007

The multi-billion dollar global market for high brightness light sources for the lighting and display sectors is presently dominated by inherently inefficient and short-lived ultra high pressure bulbs. This project seeks to develop a radically different light source based upon novel ways of frequency-doubling infra-red lasers to generate more than 3W of visible light, and to test the source in a representative demonstrator projection system. The envisaged light source will provide exceptional brightness, reliability and lifetime, and an order of magnitude improvement in energy efficiency. In the initial target market area of high performance light projection equipment the technology developed would be additionally commercially disruptive by virtue of its far superior colour rendering capabilities. A range of large and rapidly-growing related markets would be accessible to the new light source, offering excellent potential returns.

Agency: GTR | Branch: EPSRC | Program: | Phase: Research Grant | Award Amount: 5.12M | Year: 2010

Currently, special fibres are a crucial enabling technology that communicates worldwide, navigates airliners, monitors oil wells, cuts steel, and shoots down missiles (and even mosquitoes!). New classes of special optical fibres have demonstrated the potential to extend the impact of optical fibres well beyond the telecommunications arena, in areas as diverse as defence, industrial processing, marine engineering, biomedicine, DNA processing and astronomy. They are making an impact and commercial inroads in fields such as industrial sensing, bio-medical laser delivery systems, military gyro sensors, as well as automotive lighting and control - to name just a few - and span applications as diverse as oil well downhole pressure sensors to intra-aortic catheters, to high power lasers that can cut and weld steel. Optical fibres and fibre-related products not only penetrate existing markets but also, more significantly, they expand the application space into areas that are impossible by conventional technologies. To fulfil this potential and further revolutionise manufacturing, there is a strong need to continue innovating and manufacturing market-worthy fibres, in order to sustain the growth in the fast expanding fibre-based manufacturing sectors.From its inception in the 1960s, the UK has played a major role in shaping the optical fibre industry, and the highly regarded Optoelectronics Research Centre (ORC) at the University of Southampton is at the forefront. Our vision is to build upon the rich expertise and extensive facilities that are already in place to create a world-class, industry-led Centre for advanced manufacturing processes for new photonic components and materials that will fuel the growth of UK companies, enabling them to expand their product portfolio, enhance competitiveness and increase their market penetration and overall share. We will liaise closely with UK and other European Research Centres to advance further the fibre and related material technology, as well as increase the application space. The Centre is expected to play a key role in job and wealth creation in the expanding and highly competitive advanced technology and manufacturing sector. The UK industrial sector accounts for a production volume in photonics of EUR 5.2 billion, which corresponds to 12% of the European volume, and 2.3% of the world market. Particularly notable about the photonics industrial sector is that it comprises a majority of SMEs, who typically do not have the economies of scale nor the financial resources to invest heavily in infrastructure on their own. Use of the Innovative Manufacturing funding mechanism, complemented by industrial user-provided direct and in-kind contributions of ~4M (similar in amount to that sought from EPSRC for the establishment of this IMRC) , will supply the seed funding and focus needed to research and develop the next generation fibre material and technology platforms, which in turn will fuel the growth in photonics related manufacturing. The establishment of such a manufacturing research centre, working closely with existing key high-tech photonic UK companies as well as emerging companies and new start-ups, will make a substantive difference to their ability to develop and gain larger penetration in their respective markets. The IMRC strategy will follow multiple strands taking a number of initiatives to continuously expand and strengthen the initial research portfolio by moving it further up in the innovation and value-added spectrum. During its lifetime, the IMRC will make concerted efforts to further increase the user number and level of engagement.

Discover hidden collaborations