Entity

Time filter

Source Type

State College, PA, United States

Patent
Strategic Polymer Sciences, Inc. | Date: 2012-11-21

A localized multimodal haptic system includes one or more electromechanical polymer (EMP) transducers, each including an EMP layer, such as an electrostrictive polymer active layer. In some applications the EMP transducer may perform an actuator function or a sensor function, or both. The EMP polymer layer has a first surface and a second surface on which one or more electrodes are provided. The EMP layer of the EMP actuator may be 5 microns thick or less. The EMP transducers may provide local haptic response to a local a stimulus. In one application, a touch sensor may be associated with each EMP transducer, such that the haptic event at the touch sensor may be responded to by activating only the associated EMP transducer. Furthermore, the EMP transducer may act as its own touch sensor. A variety of haptic responses may be made available. The EMP transducers may be used in various other applications, such as providing complex surface morphology and audio speakers.


Patent
Strategic Polymer Sciences, Inc. | Date: 2013-08-30

An electromechanical polymer (EMP) sensor includes (a) a first set of EMP layers provided between a first electrode and a second electrode forming a capacitor, the first set of EMP layers having one or more EMP layers capable of being activated by application of a voltage across the first and second electrodes; and (b) a sensing circuit coupled to the first electrode and the second electrode for detecting a change in capacitance or a change in voltage across the first and second electrodes. The EMP sensor may further include means for disconnecting the second electrode from a ground reference after the pre-determined voltage is applied, such that the sensing circuit senses a change in capacitance. The sensing circuit may be capable of detecting a noise portion of a voltage across the first and second electrode.


Patent
Strategic Polymer Sciences, Inc. | Date: 2013-08-30

A catheter includes an electromechanical polymer (EMP) actuator disposed in a steerable tip at the distal end of the catheter. When activated, the EMP actuator deflects the steerable tip through an angle between 0 and 270 degrees, thus permitting the operator to steer the steerable tip through the vasculature. The steerable tip also has at least a first relatively stiff region and a second relatively flexible region, and the EMP actuator is provided next to the first relatively stiff region so that the steerable tip may toward the flexible region when activated. In one implementation, an external interface allows a user to select by name one of many sets of control signals, with each set of control signals being signals calibrated for configuring the catheter to mimic a known catheter.


Patent
Strategic Polymer Sciences, Inc. | Date: 2013-07-12

A linear resonant actuator includes: (a) an electromechanical polymer (EMP) actuator; (b) a substrate having a first surface and a second surface, the EMP actuator being mounted on the first surface of the substrate; (c) clamping structure provided on two sides of the substrate so as to allow the substrate to vibrate freely between the two sides of the substrate, in response to an electrical stimulation of the EMP actuator; and (d) an inertial mass element having a contact surface for attaching to the substrate at the second surface of the substrate. The inertial mass element may include contact structures provided to attach to the substrate along thin parallel lines. In one embodiment, the inertial mass element may have a T shape, or any suitable shape for stability.


Patent
Strategic Polymer Sciences, Inc. | Date: 2013-01-07

Electromechanical polymer (EMP) actuators are used to create haptic effects on a user interface deface, such as a keyboard. The keys of the keyboard may be embossed in a top layer to provide better key definition and to house the EMP actuator. Specifically, an EMP actuator is housed inside an embossed graphic layer that covers a key of the keyboard. Such a keyboard has a significant user interface value. For example, the embossed key provides the tactile effect of the presence of a key with edges, while allowing for the localized control of haptic vibrations. For such applications, an EMP transducer provides high strains, vibrations or both under control of an electric field. Furthermore, the EMP transducer can generate strong vibrations. When the frequency of the vibrations falls within the acoustic range, the EMP transducer can generate audible sound, thereby functioning as an audio speaker.

Discover hidden collaborations