Time filter

Source Type

Palaiseau, France

High temperature nuclear reactors will address mainly the industrial cogeneration market and compete with gas cogeneration, the current reference technology. The key question for HTR is therefore: how far are HTRs competitive against gas technologies? This simple question demands a complex response. First, the cogeneration scheme has to be discussed according the specificities in heat usage of every industry as they will impact the design. Second, the costs, revenues and risks of the different lifecycle phases for both a HTR and gas cogeneration plant have to be assessed and compared. These parameters will greatly depend on each location (personnel costs, gas local prices, CO 2 pricing, etc.). A particular attention has to be given to the risk interactions between the cogeneration plant and the industrial facility it is supplying with heat and electricity (e.g. tritium contamination in industrial processes, explosion of flammable products in industrial site). This paper aims mainly at starting exchanges at international level with other equivalent initiatives in order to assess in general terms the economic viability of HTR worldwide, in relation to the evaluation of the HTR global market. © 2013 Elsevier B.V. Source

High temperature nuclear reactors will mainly address the market of industrial cogeneration. This market is a part of the overall market of the heat concretely consumed by industry, in particular heat intensive industries. In simpler terms, the HTR market is a part of the industrial cogeneration market, which itself is a part of the industrial heat market. The EU-supported project EUROPAIRS (2009-2011) has therefore carried out a comprehensive study of the complete European industrial heat market in order to prepare for the deployment of HTRs. This information did not exist priori to the study. The purposes of this paper are (1) to present the methodology of the study and the experience gathered in order to exchange with non-European equivalent or future initiatives (beyond the discussions already engaged with the US), (2) to synthesise the quantitative results of the study and (3) to briefly report on the cogeneration usages in several key industries (e.g. chemicals, refining, steelmaking...) which may affect HTR designing. The paper finishes with some reflection on the part of the heat market that HTRs could potentially address. In correlation with our other paper on the pre-economic analysis, this paper intend to pave the way for an international cooperation on evaluating the market for HTR worldwide, which is an information of common interest to the HTR community. © 2013 Elsevier B.V. Source

Bredimas A.,Strane Innovation | Kugeler K.,Strane Innovation | Futterer M.A.,Strane Innovation | Futterer M.A.,European Commission
Nuclear Engineering and Design

High temperature nuclear reactors are a technology, of which early versions were demonstrated in the 1960s-1980s in Germany (AVR, THTR) and the United States (Peach Bottom, Fort St. Vrain). HTRs were initially designed for high temperature, high efficiency electricity generation but the technology, the market and the targeted applications have evolved since then to address industrial cogeneration and new operational conditions (in particular new safety regulations). This paper intends to analyse the latest status of HTR today, as regards their intrinsic strengths and weaknesses and their external context, whether positive (opportunities) or negative (threats). Different dimensions are covered by the analysis: technology status, results from R&D programmes (especially in Europe), competences and skills, licensing aspects, experience feedback from demonstrator operation (in particular in Germany), economic conditions and other non-technical aspects. Europe has a comprehensive experience in the field of HTR with capabilities in both pebble bed and prismatic designs (R&D, engineering, manufacturing, operation, dismantling, and the full fuel cycle). Europe is also a promising market for HTR as the process heat market is large with good industrial and cogeneration infrastructures. The analysis of the European situation is to a good deal indicative for the global potential of this technology. © 2013 Published by Elsevier B.V. Source

Discover hidden collaborations