United Kingdom
United Kingdom

Time filter

Source Type

News Article | February 23, 2017
Site: www.eurekalert.org

A major new £100 million investment by the government into the development of an innovative multi-disciplinary science and technology research centre was announced today (Thursday 23rd February) by Business Secretary Greg Clark. The new Rosalind Franklin Institute (RFI) - named in honour of the pioneering British scientist whose use of X-rays to study biological structures played a crucial role in the discovery of DNA's 'double helix' structure by Francis Crick and James Watson - will bring together UK strengths in the physical sciences, engineering and life sciences to create a national centre of excellence in technology development and innovation. Business Secretary Greg Clark said: "The UK has always been a pioneer in the world of science, technology and medical research. It's this excellence we want to continue to build on and why we made science and research a central part of our Industrial Strategy - strengthening links between research and industry, ensuring more home-grown innovation continues to benefit millions around the world. "Named after one of the UK's leading chemists, the new Rosalind Franklin Institute will inspire and house scientists who could be responsible for the next great discovery that will maintain the UK's position at the forefront of global science for years to come." Delivered and managed by the Engineering and Physical Sciences Research Council (EPSRC), the RFI will bring together academic and industry researchers from across the UK to develop disruptive new technologies designed to tackle major challenges in health and life sciences, accelerate the discovery of new treatments for chronic diseases affecting millions of people around the world (such as dementia), and deliver new jobs and long-term growth to the local and UK economies. Chair of the Research Councils and EPSRC Chief Executive, Professor Philip Nelson said: "The UK is currently in a world leading position when it comes to developing new medical treatments and technologies in the life sciences. However, other countries are alive to the potential and are already investing heavily. The Rosalind Franklin Institute will help secure the country as one of the best places in the world to research, discover, and innovate." The central hub at Harwell will link to partner sites at the universities of Cambridge, Edinburgh, Manchester and Oxford, Imperial College, King's College London, and University College London. Industry partners will be on board from the outset, and the Institute will grow over time, as more universities and researchers participate. The work at new Institute will contribute directly to the delivery of EPSRC's 'Healthy Nation' prosperity outcome, its Healthcare Technologies programme, and to the Technology Touching Life initiative that spans three research councils (the Biotechnology and Biological Sciences Research Council (BBSRC), the Medical Research Council (MRC) and EPSRC) and seeks to foster interdisciplinary technology development research across the engineering, physical and life sciences. The development of the RFI has been led by Professor Ian Walmsley, FRS, from the University of Oxford, who said: "This is a new joint venture between some of the UK's leading universities and key partners in industry and research councils. The aim is to speed the application of cutting-edge physical science insights, methods and techniques to health and life sciences by providing an interface between research programmes at the forefront of these areas, co-located at Harwell and connected, dynamically, to the wider UK research base. "We anticipate innovative new businesses will grow from this effort over time, as the Institute will engage with a range of key industries from inception. A collaborative joint venture model allows the RFI to make the most of interactions and draw on a wide range of existing research excellence from across the UK." Patrick Vallance President of R&D at GSK said: "We welcome the creation of the RFI which will bring world-leading, multi-disciplinary teams from industry and academia closer together, and will further strengthen the UK as a place to translate excellent science into patient benefit. Through collaboration we will be able to make advances in life science technologies much quicker than we could manage alone." Research at the RFI will initially be centred on five selected technology themes, focusing on next-generation imaging technologies - X-ray science, correlated imaging (combining X-ray, electron and light microscopy), imaging by sound and light, and biological mass spectrometry - and on new chemical methods and strategies for drug discovery. Dame Carol Robinson, FRS, who is leading the RFI's biological mass spectrometry theme, and received the 2004 Royal Society Rosalind Franklin Award that recognises outstanding scientific contributions and supports the promotion of women in science, technology, engineering and mathematics, said: "It is fitting that this new Institute bears Rosalind Franklin's name. She achieved so much in a relatively short life and without her work many of the advances that have taken place since would not have come about. Work in the Institute will include development of the next-generation of physical tools including mass spectrometry, instruments for X-ray science and for advanced microscopy - fields directly descended from her research interests." For further information please contact the EPSRC Press Office on 01793 444 404 or email pressoffice@epsrc.ac.uk As the main funding agency for engineering and physical sciences research, our vision is for the UK to be the best place in the world to Research, Discover and Innovate. By investing £800 million a year in research and postgraduate training, we are building the knowledge and skills base needed to address the scientific and technological challenges facing the nation. Our portfolio covers a vast range of fields from healthcare technologies to structural engineering, manufacturing to mathematics, advanced materials to chemistry. The research we fund has impact across all sectors. It provides a platform for future economic development in the UK and improvements for everyone's health, lifestyle and culture. We work collectively with our partners and other Research Councils on issues of common concern via Research Councils UK. http://www. The Science and Technology Facilities Council (STFC) is keeping the UK at the forefront of international science and tackling some of the most significant challenges facing society such as meeting our future energy needs, monitoring and understanding climate change, and global security. The Council has a broad science portfolio and works with the academic and industrial communities to share its expertise in materials science, space and ground-based astronomy technologies, laser science, microelectronics, wafer scale manufacturing, particle and nuclear physics, alternative energy production, radio communications and radar. STFC operates or hosts world class experimental facilities including in the UK the ISIS pulsed neutron source, the Central Laser Facility, and LOFAR, and is also the majority shareholder in Diamond Light Source Ltd. It enables UK researchers to access leading international science facilities by funding membership of international bodies including European Laboratory for Particle Physics (CERN), the Institut Laue Langevin (ILL), European Synchrotron Radiation Facility (ESRF) and the European Southern Observatory (ESO). STFC is one of seven publicly-funded research councils. It is an independent, non-departmental public body of the Department for Business, Energy and Industrial Strategy (BEIS). Follow us on Twitter at @STFC_Matters. http://www. BBSRC invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond. Funded by Government, BBSRC invested £473M in world-class bioscience, people and research infrastructure in 2015-16. We support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals. More information about BBSRC, our science and our impact. The Medical Research Council is at the forefront of scientific discovery to improve human health. Founded in 1913 to tackle tuberculosis, the MRC now invests taxpayers' money in some of the best medical research in the world across every area of health. Thirty-one MRC-funded researchers have won Nobel prizes in a wide range of disciplines, and MRC scientists have been behind such diverse discoveries as vitamins, the structure of DNA and the link between smoking and cancer, as well as achievements such as pioneering the use of randomised controlled trials, the invention of MRI scanning, and the development of a group of antibodies used in the making of some of the most successful drugs ever developed. Today, MRC-funded scientists tackle some of the greatest health problems facing humanity in the 21st century, from the rising tide of chronic diseases associated with ageing to the threats posed by rapidly mutating micro-organisms. http://www. Diamond Light Source is the UK's synchrotron science facility, and is approximately the size of Wembley Stadium. It works like a giant microscope, harnessing the power of electrons to produce bright light that scientists can use to study anything from fossils to jet engines to viruses and vaccines. Diamond is used by thousands of academic and industrial researchers across a wide range of disciplines, including structural biology, health and medicine, solid-state physics, materials & magnetism, nanoscience, electronics, earth & environmental sciences, chemistry, cultural heritage, energy and engineering. Many everyday commodities that we take for granted, from food manufacturing to consumer products, from revolutionary drugs to surgical tools, from computers to mobile phones, have all been developed or improved using synchrotron light. Diamond generates extremely intense pin-point beams of synchrotron light. These are of exceptional quality, and range from X-rays to ultraviolet to infrared. Diamond's X-rays are around 10 billion times brighter than the sun. Diamond is one of the most advanced scientific facilities in the world, and its pioneering capabilities are helping to keep the UK at the forefront of scientific research. 2017 marks a double celebration for Diamond - 15 years since the company was formed, and 10 years of research and innovation. In this time, researchers who have obtained their data at Diamond have authored over 5,000 papers. The institute is funded by the UK Government through the Science and Technology Facilities Council (STFC), and by the Wellcome Trust For more information about Diamond visit http://www. Harwell Campus is a public private partnership between Harwell Oxford Partners, U+I Group PLC and two Government backed agencies, the Science and Technology Facilities Council (STFC) and the UK Atomic Energy Agency (UKAEA). Harwell is one of the world's most important science and innovation locations. It has a growing reputation as the UK's gateway to space with over 65 space and satellite applications related organisations located on campus and is now seeing rapid growth in the Life Sciences and HealthTec sector with over 1,000 people working in this field alone at Harwell. In addition to space and life sciences, the campus hosts an array of other key sectors including, Big Data and Supercomputing, Energy and Environment and Advanced Engineering and Materials. With a legacy of many world firsts, the campus comprises 710 acres, over 200 organisations and 5,500 people. Harwell Campus is the UK's National Science Facility and is among Europe and the world's leading sites dedicated to the advancement of science, technology and innovation. Having spent 75 years at the forefront of British innovation and discovery, Harwell Campus continues to drive scientific advancements to the benefit of the UK economy and centred around a community hub. Science experts, academics, government organisations, private sector R&D departments and investors create an environment where innovation, collaboration and discovery thrive. To find out more about events, open days or the new developments, visit http://www. or call 01235 250091


Harwell Campus SWINDON, 27-Feb-2017 — /EuropaWire/ — A major new £100 million investment by the government into the development of an innovative multi-disciplinary science and technology research centre was announced today (Thursday 23 February 2017) by Business Secretary Greg Clark. The new Rosalind Franklin Institute (RFI) – named in honour of the pioneering British scientist whose use of X-rays to study biological structures played a crucial role in the discovery of DNA‘s ‘double helix’ structure by Francis Crick and James Watson – will bring together UK strengths in the physical sciences, engineering and life sciences to create a national centre of excellence in technology development and innovation. The new Rosalind Franklin Institute will have a hub based at the Harwell campus It will bring together UK expertise to develop new technologies that will transform our understanding of disease and speed up the development of new treatments Part of the government’s Industrial Strategy to maintain the UK’s global leadership in science, innovation and research Business Secretary Greg Clark said: The UK has always been a pioneer in the world of science, technology and medical research. It’s this excellence we want to continue to build on and why we made science and research a central part of our Industrial Strategy – strengthening links between research and industry, ensuring more home-grown innovation continues to benefit millions around the world. Named after one of the UK’s leading chemists, the new Rosalind Franklin Institute will inspire and house scientists who could be responsible for the next great discovery that will maintain the UK’s position at the forefront of global science for years to come. Delivered and managed by the Engineering and Physical Sciences Research Council (EPSRC), the RFI will bring together academic and industry researchers from across the UK to develop disruptive new technologies designed to tackle major challenges in health and life sciences, accelerate the discovery of new treatments for chronic diseases affecting millions of people around the world (such as dementia), and deliver new jobs and long-term growth to the local and UK economies. Chair of the Research Councils and EPSRC Chief Executive, Professor Philip Nelson said: The UK is currently in a world leading position when it comes to developing new medical treatments and technologies in the life sciences. However, other countries are alive to the potential and are already investing heavily. The Rosalind Franklin Institute will help secure the country as one of the best places in the world to research, discover, and innovate. The central hub at Harwell will link to partner sites at the universities of Cambridge, Edinburgh, Manchester and Oxford, Imperial College, King’s College London, and University College London. Industry partners will be on board from the outset, and the Institute will grow over time, as more universities and researchers participate. The work at new Institute will contribute directly to the delivery of EPSRC‘s ‘Healthy Nation’ prosperity outcome, its Healthcare Technologies programme, and to the Technology Touching Life initiative that spans three research councils (the Biotechnology and Biological Sciences Research Council (BBSRC), the Medical Research Council (MRC) and EPSRC) and seeks to foster interdisciplinary technology development research across the engineering, physical and life sciences. The development of the RFI has been led by Professor Ian Walmsley, FRS, from the University of Oxford, who said: This is a new joint venture between some of the UK’s leading universities and key partners in industry and research councils. The aim is to speed the application of cutting-edge physical science insights, methods and techniques to health and life sciences by providing an interface between research programmes at the forefront of these areas, co-located at Harwell and connected, dynamically, to the wider UK research base. We anticipate innovative new businesses will grow from this effort over time, as the Institute will engage with a range of key industries from inception. A collaborative joint venture model allows the RFI to make the most of interactions and draw on a wide range of existing research excellence from across the UK. Patrick Vallance, President of R&D at GSK said: We welcome the creation of the RFI which will bring world-leading, multi-disciplinary teams from industry and academia closer together, and will further strengthen the UK as a place to translate excellent science into patient benefit. Through collaboration we will be able to make advances in life science technologies much quicker than we could manage alone. Research at the RFI will initially be centred on five selected technology themes, focusing on next-generation imaging technologies – X-ray science, correlated imaging (combining X-ray, electron and light microscopy), imaging by sound and light, and biological mass spectrometry – and on new chemical methods and strategies for drug discovery. Dame Carol Robinson, FRS, who is leading the RFI‘s biological mass spectrometry theme, and received the 2004 Royal Society Rosalind Franklin Award that recognises outstanding scientific contributions and supports the promotion of women in science, technology, engineering and mathematics, said: It is fitting that this new Institute bears Rosalind Franklin’s name. She achieved so much in a relatively short life and without her work many of the advances that have taken place since would not have come about. Work in the Institute will include development of the next-generation of physical tools including mass spectrometry, instruments for X-ray science and for advanced microscopy – fields directly descended from her research interests. Notes for Editors: The Engineering and Physical Sciences Research Council (EPSRC) As the main funding agency for engineering and physical sciences research, our vision is for the UK to be the best place in the world to Research, Discover and Innovate. By investing £800 million a year in research and postgraduate training, we are building the knowledge and skills base needed to address the scientific and technological challenges facing the nation. Our portfolio covers a vast range of fields from healthcare technologies to structural engineering, manufacturing to mathematics, advanced materials to chemistry. The research we fund has impact across all sectors. It provides a platform for future economic development in the UK and improvements for everyone’s health, lifestyle and culture. We work collectively with our partners and other Research Councils on issues of common concern via Research Councils UK. The Science and Technology Facilities Council (STFC) STFC is keeping the UK at the forefront of international science and tackling some of the most significant challenges facing society such as meeting our future energy needs, monitoring and understanding climate change, and global security. The Council has a broad science portfolio and works with the academic and industrial communities to share its expertise in materials science, space and ground-based astronomy technologies, laser science, microelectronics, wafer scale manufacturing, particle and nuclear physics, alternative energy production, radio communications and radar. STFC operates or hosts world class experimental facilities including in the UK the ISIS pulsed neutron source, the Central Laser Facility, and LOFAR, and is also the majority shareholder in Diamond Light Source Ltd. It enables UK researchers to access leading international science facilities by funding membership of international bodies including European Laboratory for Particle Physics (CERN), the Institut Laue Langevin (ILL), European Synchrotron Radiation Facility (ESRF) and the European Southern Observatory (ESO). STFC is one of seven publicly-funded research councils. It is an independent, non-departmental public body of the Department for Business, Energy and Industrial Strategy (BEIS). The Biotechnology and Biological Sciences Research Council (BBSRC) BBSRC invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond. Funded by Government, BBSRC invested £473M in world-class bioscience, people and research infrastructure in 2015-16. We support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals. More information about BBSRC strategically funded institutes. The Medical Research Council (MRC) The Medical Research Council is at the forefront of scientific discovery to improve human health. Founded in 1913 to tackle tuberculosis, the MRC now invests taxpayers’ money in some of the best medical research in the world across every area of health. Thirty-one MRC-funded researchers have won Nobel prizes in a wide range of disciplines, and MRC scientists have been behind such diverse discoveries as vitamins, the structure of DNA and the link between smoking and cancer, as well as achievements such as pioneering the use of randomised controlled trials, the invention of MRI scanning, and the development of a group of antibodies used in the making of some of the most successful drugs ever developed. Today, MRC-funded scientists tackle some of the greatest health problems facing humanity in the 21st century, from the rising tide of chronic diseases associated with ageing to the threats posed by rapidly mutating micro-organisms. www.mrc.ac.uk Diamond Light Source Diamond Light Source is the UK’s synchrotron science facility, and is approximately the size of Wembley Stadium. It works like a giant microscope, harnessing the power of electrons to produce bright light that scientists can use to study anything from fossils to jet engines to viruses and vaccines. Diamond is used by thousands of academic and industrial researchers across a wide range of disciplines, including structural biology, health and medicine, solid-state physics, materials & magnetism, nanoscience, electronics, earth & environmental sciences, chemistry, cultural heritage, energy and engineering. Many everyday commodities that we take for granted, from food manufacturing to consumer products, from revolutionary drugs to surgical tools, from computers to mobile phones, have all been developed or improved using synchrotron light. Diamond generates extremely intense pin-point beams of synchrotron light. These are of exceptional quality, and range from X-rays to ultraviolet to infrared. Diamond’s X-rays are around 10 billion times brighter than the sun. Diamond is one of the most advanced scientific facilities in the world, and its pioneering capabilities are helping to keep the UK at the forefront of scientific research. 2017 marks a double celebration for Diamond – 15 years since the company was formed, and 10 years of research and innovation. In this time, researchers who have obtained their data at Diamond have authored over 5,000 papers. The institute is funded by the UK Government through the Science and Technology Facilities Council (STFC), and by the Wellcome Trust The Harwell Campus Harwell Campus is a public private partnership between Harwell Oxford Partners, U+I Group PLC and two Government backed agencies, the Science and Technology Facilities Council (STFC) and the UK Atomic Energy Agency (UKAEA). Harwell is one of the world’s most important science and innovation locations. It has a growing reputation as the UK’s gateway to space with over 65 space and satellite applications related organisations located on campus and is now seeing rapid growth in the Life Sciences and HealthTec sector with over 1,000 people working in this field alone at Harwell. In addition to space and life sciences, the campus hosts an array of other key sectors including, Big Data and Supercomputing, Energy and Environment and Advanced Engineering and Materials. With a legacy of many world firsts, the campus comprises 710 acres, over 200 organisations and 5,500 people. Harwell Campus is the UK’s National Science Facility and is among Europe and the world’s leading sites dedicated to the advancement of science, technology and innovation. Having spent 75 years at the forefront of British innovation and discovery, Harwell Campus continues to drive scientific advancements to the benefit of the UK economy and centred around a community hub. Science experts, academics, government organisations, private sector R&D departments and investors create an environment where innovation, collaboration and discovery thrive. Harwell’s Cluster Strategy The Cluster of about 70 Space organisations at Harwell is testament to the power of co-locating industry, academia and the public sector alongside investors and entrepreneurs. The European Space Agency, RAL Space, The UK Space Agency, Airbus, Thales Alenia Space, Lockheed Martin, and Deimos Space UK can all be found on the Campus. This creates many opportunities for collaboration, increasing capability and sharing risk. Being within a Cluster brings access to high-quality common infrastructure, facilities and expertise, alongside exposure to new markets The Harwell vision is to be home to a number of Clusters that exploit the existing strengths of the Campus. The next step is a new HealthTec Cluster that will benefit from the considerable synergies across the life and physical sciences capabilities of the Campus and the Space cluster. These clusters will enrich each other, creating a powerful multidisciplinary environment tailored to problem solving that will allow the UK to compete with the best in the world. The clustering of industries, facilities and science experts has given rise to the term Harwell Effect – and is an ideal model for future science and business innovation programmes. Science clusters drive economic growth. MIT has created businesses with a combined value of $3tn, the equivalent of California’s GDP. Harwell Campus is the only location in the UK with the potential to emulate this success. To find out more about events, open days or the new developments, visit the Harwell Campus website. SOURCE: EPSRC Contact Details In the following table, contact information relevant to the page. The first column is for visual reference only. Data is in the right column. Name: EPSRC Press Office Telephone: 01793 444404


SWINDON, 27-Feb-2017 — /EuropaWire/ — A new agreement has guaranteed continued access to two world-class telescopes for astronomers in the UK. The future of the William Herschel and Isaac Newton telescopes on La Palma has been secured for the next decade thanks to a new operation agreement between the UK’s Science and Technology Facilities Council (STFC), the Netherlands Organisation for Scientific Research (NWO) and the current owner of the telescopes, Instituto de Astrofísica de Canarias (IAC). STFC and NWO signed the agreement in 2016, and the new arrangement came into effect this week with the final signature from IAC in a ceremony at the headquarters of the Isaac Newton Group of Telescopes (ING) on February 20. Under the 10-year agreement, telescope time will be shared between the three partners, who will each also contribute toward maintenance costs. The STFC will continue to manage the operation of the telescopes through the ING base on La Palma, which has been in charge of the telescopes since their installation in the mid-1990s. Speaking about the new agreement Professor Grahame Blair, STFC’s Director of Programmes said “We are very pleased the UK astronomy research community will continue to be a major partner in the far reaching scientific programme of research taking place at the ING. The next decade will be very exciting for UK astronomers working with the ING and the next-generation facility multi-fibre spectrograph known as WEAVE will offer researchers an unparalleled opportunity to learn more about the origins of the Milky Way.” The agreement ensures the continuation of the successful collaboration of the UK and the Netherlands in the operation of telescopes on La Palma, which dates back to 1981, and the extension of the 14-year partnership with IAC. For the William Herschel Telescope, the partners are finalising the construction of WEAVE, a next-generation facility multi-fibre spectrograph, which will be used to help us understand more about the formation of galaxies and the expansion dynamics of the universe. For the Isaac Newton Telescope, a new high-resolution stabilised spectrograph will allow the detection of Earth-like planets around nearby stars. The Isaac Newton Group of Telescopes (ING) operates three telescopes on the island of La Palma in the Spanish Canary Islands. They are the: The ING is operated under a tripartite arrangement on behalf of the UK, the Nederlanse Organisatie voor Wetenschappelijk (NWO) of the Netherlands and the Instituto de Astrofísica de Canarias (IAC) in Spain. The Director of the ING is Dr Marc Balcells. The ING’s aim is to develop collaboration between astronomers in the UK, the Netherlands and Spain and ensure that, through continual maintenance and development, these telescopes remain at the forefront of world astronomy.


News Article | December 7, 2016
Site: www.prweb.com

Rainbow Seed Fund, an early-stage venture capital fund focused on promising technologies developed at the UK’s largest publicly-funded research facilities and campuses, today announces that the fund have now leveraged more than £200m to work supporting UK’s most ground-breaking and innovative companies. Since the Fund’s inception in 2002, Rainbow Seed Fund has been investing in the earliest and riskiest stages to create promising technology companies that stem out of engineering and high-quality science research. The Fund has made a significant contribution to the commercialisation of more than 30 high quality science technology start-up companies in sectors such as health, environmental services, international development and security. Rainbow’s portfolio showcases a number of ‘world’s firsts’ ambitions and includes two companies named by the World Economic Forum as ‘Technology Pioneers’ (see below list). Rainbow Seed Fund partners are leading UK public sector research establishments led by STFC (Science and Technology Facilities Council), BBSRC (Biotechnology and Biological Sciences Research Council), NERC and Dstl (Defence Science and Technology Laboratory). The fund is independently managed by Midven. “Securing the first round of finance is notoriously hard for early-stage companies, as is investor willingness to continue to back the most promising companies in further funding rounds,” said Dr Andrew Muir, Rainbow Seed Fund Investment Director. “Rainbow aims to lower this establishment phase hurdle and drive companies towards commercialisation and sustainability, offering strategic support and leveraging private capital to help businesses stand on their own. Our differentiating approach is that we don’t just invest in established teams or developed companies. With a risk appetite that is higher than pure private funds, we get involved at the earliest stages and continue to grow with them as ‘patient capital’ investors.” Rainbow Seed Fund Portfolio: World’s Firsts Two of Rainbow’s portfolio companies, Tokamak Energy and Synthace, have been named World Economic Forum Technology Pioneers, joining the ranks of the world’s most innovative companies. By offering backing at an early stage, Rainbow has a unique opportunity to support the UK’s most promising scientists and help turn their ideas into market-leading companies. A number of Rainbow Seed Fund portfolio companies are being recognised for their ‘world’s first ambitions,’ including: MANUFACTURING / ENGINEERING -- Cobalt Light Systems, a spin-out from Rainbow partner STFC, manufactures and sells innovative instruments and technologies for non-invasive, rapid analysis of materials. This technology has applications in airport security to quickly screen liquid contents like baby’s milk; pharmaceutical materials analysis of capsules, tablets, gels or solutions; and handheld detection devices to analyse hazardous materials, explosives and narcotics. Cobalt won the prestigious MacRobert Award from the Royal Academy of Engineering in 2014. -- Last year, Tokamak Energy garnered a 2015 Technology Pioneer award to accelerate the development of cost-effective, clean energy from fusion within the next 10 years. Tokamak aims to accelerate the development of fusion energy by combining two emerging technologies – spherical tokamaks and high-temperature superconductors. MEDICAL / BIOTECH -- Crescendo Biologics is a biopharmaceutical company discovering and developing potent, highly differentiated Humabody® therapeutics in Oncology. In October 2016, Crescendo signed a deal with Takeda on using its Humabody® technology platform to generate tumour targeting drug conjugates and immuno-oncology therapeutics. The deal has a headline value of up to $790m. -- University College London spin-out Synthace, which provides next generation software and processes to exponentially improve productivity in bioscience, was named as the only UK entrant on the World Economic Forum Technology Pioneer 2016 list. Synthace is developing Antha to automate biological research. Antha brings an engineering approach to biology, making experiments far more efficient, connecting and automating complex equipment and enabling better engineer biology for health, food, energy and manufacturing. The company, is already serving customers across the pharmaceutical, agriscience and industrial biotechnology industries. SOFTWARE / HARDWARE -- Formed in February 2011, Spectral Edge is a UEA spin-out from the same stable as the technology behind Apple’s HDR image processing. Spectral Edge technology enhances images and video by using information outside the normal visible spectrum or applying transformations to that within it. Applications range from medical imaging and surveillance all the way to consumer applications such as enhancing camera images and TV pictures. ENVIRONMENTAL -- International GeoScience Services (IGS), a spin-out from the British Geological Survey, has developed IGS Xplore, a new and innovative mineral prospectivity software system designed for de-risking early-stage decision making in mineral exploration. The software system uses novel, non-GIS based, semantically-driven technology to generate early-stage, value-added prospectivity maps for regions, countries or geological terranes where base geodata exists. IGS Xplore readily identifies early-stage exploration targets, quickly and cost-effectively, for an extensive range of commodities in a wide variety of regional geological environments. -- A spin-out from STFC Rutherford Appleton Laboratory, Oxsensis is pioneering a “new breed” of highly accurate, highly stable optical sensors. Using light to measure heat, temperature and pressure, based upon proprietary intellectual property rights, Oxsensis’ dynamic sensors can be used in extreme environments — like those created by jet engines and power stations — where traditional sensors run out of steam. Better sensors allow power savings, reduced emissions and improved asset risk management. Oxsensis works with blue-chip partner in global markets of national significance — aerospace, power generation, space, nuclear, and oil and gas. SPACE -- Oxford Space Systems (OSS) has developed a new generation of deployable global satellite space structures that are lighter, less complex and lower cost than those in current commercial demand. In September 2016, OSS set a space industry record going from company formation to material design through product design, test and launch of its deployable boom on a cubesat (a type of miniaturized satellite for space research) in under 30 months. OSS is using the mission as a flight opportunity to validate a number of predictions made for its proprietary flexible composite material in the demanding environment of low-earth orbit. Rainbow Seed Fund Milestones -- Helped to create more than 30 high technology start-up companies across sectors such as health, environmental services, international development and security. -- Leveraged more than £200 million of private investment into their portfolio companies. This represents a ratio of over £20 for every £1 invested from Rainbow. -- Over and above co-investment, Rainbow has helped generate wider economic impact in the form of salaries, taxes and economic activity in suppliers. Known as “Gross Value Add” (GVA), this measurement, at £5 of GVA for every £1 invested by Rainbow, shows the benefit of early stage investment and is forecasted to grow substantially as the companies mature and grow. -- The Fund bolsters the UK’s exports – an overwhelming majority of sales in Rainbow companies are overseas and total sales have already reached over £70m. -- Rainbow has helped to create 240+ high value technology-related jobs, a figure that is rising rapidly as the companies in Rainbow’s portfolio accelerate and transition from research into production and sales. -- The Fund has already had four successful exits and has recycled the funds into new investments. About Rainbow Seed Fund The Rainbow Seed Fund is an early-stage venture capital fund dedicated to kick-starting technology companies from great science. We focus on companies based on research conducted in publicly-funded laboratories, located on the Research Councils’ science and technology campuses or working in fields of strategic interest to the UK (such as synthetic biology). The Fund is backed by nine UK publicly-funded research organisations including STFC, BBSRC, Dstl and NERC and the Department of Business, Innovation and Skills (BIS). The Fund, whose portfolio comprises more than 30 companies, holds investments in some of the UK’s most innovative companies in areas as diverse as novel antibiotics, research into Alzheimer’s disease, “green” chemicals and airport security. The Fund has leveraged more than £200 million of private investment from just under £9 million of its own investment and helped create many high-value technology jobs. The Rainbow Seed Fund is managed by Midven, an established venture capital firm with a successful track record of investing in small and medium-sized enterprises. For more information, please visit http://www.rainbowseedfund.com.


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Research Grant | Award Amount: 605.74K | Year: 2015

The project Compressive Imaging in Radio Interferometry (CIRI) aims to bring new advances for interferometric imaging with next-generation radio telescopes, together with theoretical and algorithmic evolutions in generic compressive imaging. Radio Interferometry (RI) allows observations of the sky at otherwise inaccessible angular resolutions and sensitivities, providing unique information for astrophysics and cosmology. New telescopes are being designed, such as the Square Kilometer Array (SKA), whose science goals range from astrobiology and strong field gravity, to the probe of early epochs in the Universe when the first stars formed. These instruments will target orders of magnitudes of improvement in resolution and sensitivity. In this context, they will have to cope with extremely large data sets. Associated imaging techniques thus literally need to be re-invented over the next few years. The emerging theory of compressive sampling (CS) represents a significant evolution in sampling theory. It demonstrates that signals with sparse representations may be recovered from sub-Nyquist sampling through adequate iterative algorithms. CIRI will build on the theoretical and algorithmic versatility of CS and leverage new advanced sparsity and sampling concepts to define, from acquisition to reconstruction, next-generation CS techniques for ultra-high resolution wide-band RI imaging and calibration techniques. The new techniques, and the associated fast algorithms capable of handling extremely large data sets on multi-core computing architectures, will be validated on simulated and real data. Astronomical imaging is not only a target, but also an essential means to trigger novel generic developments in signal processing. CIRI indeed aims to provide significant advances for compressive imaging thereby reinforcing the CS revolution, which finds applications all over science and technology, in particular in biomedical imaging. CIRI is thus expected to impact science, economy, and society by developing new imaging technologies essential to support forthcoming challenges in astronomy, and by delivering a new class of compressive imaging algorithms that can in turn be transferred to many applications, starting with biomedical imaging.


News Article | March 17, 2016
Site: phys.org

In June 2015, a black hole called V404 Cygni underwent dramatic brightening for about two weeks, as it devoured material that it had stripped off an orbiting companion star. V404 Cygni, which is about 7,800 light years from Earth, was the first definitive black hole to be identified in our Galaxy and can appear extremely bright when it is actively devouring material. In a new study published in the journal Monthly Notices of the Royal Astronomical Society, an international team of astronomers, led by the University of Southampton, report that the black hole emitted dazzling red flashes lasting just fractions of a second, as it blasted out material that it could not swallow. The astronomers associated the red colour with fast-moving jets of matter that were ejected from close to the black hole. These observations provide new insights into the formation of such jets and extreme black hole phenomena. Lead author of the study Dr Poshak Gandhi, Associate Professor and STFC Ernest Rutherford Fellow in the University of Southampton's Astronomy Group, comments: "The very high speed tells us that the region where this red light is being emitted must be very compact. Piecing together clues about the colour, speed, and the power of these flashes, we conclude that this light is being emitted from the base of the black hole jet. The origin of these jets is still unknown, although strong magnetic fields are suspected to play a role. "Furthermore, these red flashes were found to be strongest at the peak of the black hole's feeding frenzy. We speculate that when the black hole was being rapidly force-fed by its companion orbiting star, it reacted violently by spewing out some of the material as a fast-moving jet. The duration of these flashing episodes could be related to the switching on and off of the jet, seen for the first time in detail." Due to the unpredictable nature and rarity of these bright black hole 'outbursts', astronomers have very little time to react. For example, V404 Cygni last erupted back in 1989. V404 Cygni was exceptionally bright in June 2015 and provided an excellent opportunity for such work. In fact, this was one of the brightest black hole outbursts in recent years. But most outbursts are far dimmer, making them difficult to study. Each flash was blindingly intense, equivalent to the power output of about 1,000 Suns. And some of the flashes were shorter than 1/40th of a second—about ten times faster than the duration of a typical blink of an eye. Such observations require novel technology, so astronomers used the ULTRACAM fast imaging camera mounted on the William Herschel Telescope in La Palma, on the Canary Islands. Professor Vik Dhillon, of the University of Sheffield and co-creator of ULTRACAM, said: "ULTRACAM is unique in that it can operate at very high speed, capturing high frame-rate 'movies' of astronomical targets, in three colours simultaneously. This allowed us to ascertain the red colour of these flashes of light from V404 Cygni." Dr Gandhi concluded: "The 2015 event has greatly motivated astronomers to coordinate worldwide efforts to observe future outbursts. Their short durations, and strong emissions across the entire electromagnetic spectrum, require close communication, sharing of data, and collaborative efforts amongst astronomers. These observations can be a real challenge, especially when attempting simultaneous observations from ground-based telescopes and space satellites." Explore further: Monster black hole wakes up after 26 years More information: Furiously Fast and Red: Sub-second Optical Flaring in V404 Cyg during the 2015 Outburst Peak. MNRAS Advance Access published March 14, 2016. www.ras.org.uk/images/stories/press/Black_Holes/mnras.stw571.full.pdf


News Article | December 21, 2016
Site: physicsworld.com

This is the annual joint meeting of the IOP High Energy Particle Physics group and the IOP Astro-Particle Physics group. The meeting will take place at the University of Sheffield, in the new Diamond facility. Mid-way through the event on Tuesday 11 April, there will be an STFC town meeting followed by a public lecture.


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Research Grant | Award Amount: 27.11K | Year: 2015

The project Compressive Imaging in Radio Interferometry (CIRI) aims to bring new advances for interferometric imaging with next-generation radio telescopes, together with theoretical and algorithmic evolutions in generic compressive imaging. Radio Interferometry (RI) allows observations of the sky at otherwise inaccessible angular resolutions and sensitivities, providing unique information for astrophysics and cosmology. New telescopes are being designed, such as the Square Kilometer Array (SKA), whose science goals range from astrobiology and strong field gravity, to the probe of early epochs in the Universe when the first stars formed. These instruments will target orders of magnitudes of improvement in resolution and sensitivity. In this context, they will have to cope with extremely large data sets. Associated imaging techniques thus literally need to be re-invented over the next few years. The emerging theory of compressive sampling (CS) represents a significant evolution in sampling theory. It demonstrates that signals with sparse representations may be recovered from sub-Nyquist sampling through adequate iterative algorithms. CIRI will build on the theoretical and algorithmic versatility of CS and leverage new advanced sparsity and sampling concepts to define, from acquisition to reconstruction, next-generation CS techniques for ultra-high resolution wide-band RI imaging and calibration techniques. The new techniques, and the associated fast algorithms capable of handling extremely large data sets on multi-core computing architectures, will be validated on simulated and real data. Astronomical imaging is not only a target, but also an essential means to trigger novel generic developments in signal processing. CIRI indeed aims to provide significant advances for compressive imaging thereby reinforcing the CS revolution, which finds applications all over science and technology, in particular in biomedical imaging. CIRI is thus expected to impact science, economy, and society by developing new imaging technologies essential to support forthcoming challenges in astronomy, and by delivering a new class of compressive imaging algorithms that can in turn be transferred to many applications, starting with biomedical imaging.


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Research Grant | Award Amount: 585.81K | Year: 2016

We propose an ambitious multi-institution experimental programme to investigate one of the greatest mysteries in astrophysics: the acceleration mechanism that leads to generation of high energy cosmic rays. The presence of energetic particles in the Universe is a well established fact, with measurements of the cosmic ray (CR) spectrum extending up to astonishing 1e20 eV. In spite of this, the exact mechanism that leads to such high energy particles still remains controversial. The central theme of this proposal is to conduct a programme of linked earth-based experimental and theoretical investigations into CR acceleration mechanisms to address this long running problem. Although many different processes may result in CR acceleration, the present day understanding is that shock waves and turbulence play an essential role in energizing both the electrons and ions present in the interstellar medium. We will perform linked experimental and numerical studies of the acceleration of electrons in strong shocks formed in magnetised plasmas. The shocks will be formed by supersonic plasma flows created by high intensity lasers and Mega-Ampere-level pulsed currents. The first set of experiments will investigate the initial acceleration of electrons, which should allow the formation of electron population with energies significantly exceeding their initial thermal energy. This is expected to occur due to plasma wave turbulence which is excited in the pre-shock plasma by the ions reflected from the shock front, but this mechanism has never been tested by experiment. We will characterise the development of the turbulence and measure the parameters of the accelerated electrons using state-of-the-art diagnostic techniques previously developed by us. In the second set of experiments, we will investigate the so-called diffusive shock acceleration mechanism, which is considered as the most plausible mechanism of cosmic ray acceleration. This will be achieved by injecting sufficiently energetic electrons into the shock, in such a way that these electrons will then sample both the pre- and post-shock regions, performing multiple passages through the shock front as required for this mechanism to operate efficiently. Use of a magnetic spectrometer will allow direct measurements of the energy of the accelerated electrons which will be compared with theoretical predictions. As part of this project we will also perform numerical simulations using state of the art hybrid-MHD and PIC codes and cross-compare the results with our experimental data. The computational and theoretical components of the project will allow us to forge a strong connection between experiment, astrophysical models and observations. The proposed research lies at the border between Plasma Physics and Astrophysics, and will advance the development of the novel research area of Laboratory Astrophysics, which seeks to enhance the understanding of the physics governing the behaviour of astrophysical objects directly via scaled laboratory experiments, combined with computer modelling. Creating the extreme plasma conditions required for scaled reconstruction of astrophysical environments in the laboratory, became possible only recently thanks to the advent of high energy lasers and fast rise-time high-current pulsed power facilities. The similarity between the lab and nature in terms of key dimensionless parameters (e.g. Mach number) is sufficiently close to make such experiments highly relevant. The timeliness of this proposal is also underlined by the growing interest in this field internationally with major efforts in USA (Rochester, Livermore - NIF) and Europe (Bordeaux - LaserMegajoule). The combined expertise of the authors of this proposal and the involvement of international collaborators from Astrophysics community will allow us to create and exploit an unprecedented capability for the Laboratory Astrophysics research and provide both breadth and depth to the programme.


News Article | February 15, 2017
Site: www.businesswire.com

COLUMBUS, Ohio--(BUSINESS WIRE)--State Auto Financial Corporation (NASDAQ:STFC) today reported fourth quarter 2016 net income of $32.5 million, or $0.77 per diluted share, versus net income of $3.1 million, or $0.07 per diluted share, for the fourth quarter of 2015. Net income from operations1 per diluted share for the fourth quarter 2016 was $0.46 versus net income from operations1 per diluted share of $0.00 for the same 2015 period. For the year ended Dec. 31, 2016, STFC had net income of $21.0 million, or $0.50 per diluted share, compared to net income of $51.2 million, or $1.23 per diluted share, for the same 2015 period. Net loss from operations1 per diluted share for the year ended Dec. 31, 2016 was $0.07 versus net income from operations1 per diluted share of $0.85 for the same 2015 period. STFC’s GAAP combined ratio for the fourth quarter 2016 was 101.3 versus 106.2 for the fourth quarter of 2015. Catastrophe losses during the fourth quarter 2016 accounted for 5.0 points of the 68.6 total loss ratio points, or $16.2 million, versus 1.3 points of the total 72.8 loss ratio points, or $4.3 million, for the same period in 2015. Non­catastrophe losses during the fourth quarter 2016 included 1.9 points of favorable development relating to prior years, or $6.3 million, versus 6.9 points of adverse development, or $22.3 million, for the same period in 2015. Net written premium for the fourth quarter of 2016 increased 1.4% compared to the same period in 2015. By segment, net written premium was relatively flat for personal, business decreased 2.1% and specialty increased 11.6%. Personal auto and homeowners new business premium and new policy counts were up, while policies in force were lower compared to the fourth quarter of 2015. During the first half of 2016, the Company increased its number of personal lines agency appointments, and conducted pricing reviews designed to improve personal lines profitability. The decline in the business insurance segment was significantly driven by our decision to exit our large account business and rate actions to improve profitability in commercial auto. The growth in the specialty insurance segment was primarily driven by an increase in new business for E&S property. STFC’s GAAP combined ratio for the year ended 2016 was 106.2 compared to 101.5 for the same 2015 period. Catastrophe losses increased the loss ratio for the year ended 2016 by 6.3 points, or $81.6 million, compared to 4.0 points, or $51.1 million for the year ended 2015. Non­catastrophe losses for the year ended 2016 included 2.2 points of adverse development relating to prior years, or $28.4 million, versus 0.8 points of adverse development, or $10.7 million, for the same period in 2015. Net written premium for the year ended 2016 increased 1.5% compared to the same 2015 period. By segment, net written premium was relatively flat for personal, decreased 5.4% for business, and increased 21.7% for specialty. The trends in the personal and business net written premiums are due to the same factors discussed above for the fourth quarter. The growth in the specialty insurance segment was largely driven by an increase in new business for both E&S casualty and programs. Book Value and Return on Equity STFC’s book value was $21.31 per share as of Dec. 31, 2016, a decrease of $0.51 per share from STFC’s book value on Sept. 30, 2016. The decrease was driven by the change in unrealized investment gains, slightly offset by net income. Return on stockholders’ equity for the twelve months ended Dec. 31, 2016, was 2.4% compared to 5.8% for the twelve months ended Dec. 31, 2015. STFC’s Chairman, President and CEO Mike LaRocco commented on the quarter as follows: “We’re proud of the progress we made in 2016. We finished strong with improved, but still unacceptable fourth quarter results. In our auto lines, both personal and commercial, we’ve been focused on improving profitability. We’ve implemented rate changes, which are now starting to earn out. Wildfires in Tennessee and Hurricane Matthew added 5.3 points, or $17.4 million, to our quarterly loss ratio. Our claims organization responded quickly to customers who were affected by those catastrophes. I was gratified, but not surprised, by the response from our agents and policyholders in those areas. “We know where our challenges are, and we’re better positioned than ever to address those challenges now that we have the right people, a culture where becoming more lean and efficient is an expectation, a greater focus on improving profitability, and improved processes throughout the organization to support our efforts. “In less than 15 months, we successfully launched our new digital platform in five states for our personal auto and homeowners products. Since the launch in October, we’ve responded to feedback from agents with eight updates to the platform. That level of responsiveness is certainly not the norm across our industry; but it reflects the changes we’ve made throughout State Auto. We are a very different company today. We’ll complete the rollout of the remaining states in 2017 for our personal auto and homeowners products and we’ll start to roll out our small commercial products in mid- 2017. But it’s about much more than just technology. It’s a new way of doing business for us and for our independent agency partners, in a way that exceeds the expectations of our customers in every area – from new products and coverage, to new pricing models, to digital solutions that offer easy, convenient online access. “There’s work to be done, but State Auto enters 2017 proud of our past, and even more excited about our future.” State Auto Financial Corporation, headquartered in Columbus, Ohio, is a super regional property and casualty insurance holding company and is proud to be a Trusted Choice® company partner. STFC stock is traded on the NASDAQ Global Select Market, which represents the top fourth of all NASDAQ listed companies. The insurance subsidiaries of State Auto Financial Corporation are part of the State Auto Group. The State Auto Group markets its insurance products throughout the United States, through independent insurance agencies, which include retail agencies and wholesale brokers. The State Auto Group is rated A- (Excellent) by the A.M. Best Company and includes State Automobile Mutual, State Auto Property & Casualty, State Auto Ohio, State Auto Wisconsin, Milbank, Meridian Security, Patrons Mutual, Rockhill Insurance, Plaza Insurance, American Compensation and Bloomington Compensation. Additional information on State Auto Financial Corporation and the State Auto Insurance Companies can be found online at http://www.StateAuto.com/STFC. 1 Net income (loss) from operations, a non-GAAP financial measure which management believes is informative to Company management and investors, differs from GAAP net income (loss) only by the exclusion of realized capital gains and (losses), net of applicable taxes, on investment activity for the periods being reported. For STFC, this amounted to income of $0.31 per diluted share for the fourth quarter 2016 and income of $0.57 year to date 2016 versus income of $0.07 per diluted share for the fourth quarter 2015 and income of $0.38 year to date 2015. STFC has scheduled a conference call with interested investors for Tuesday, Feb. 14, at 11 a.m. ET to discuss the Company’s fourth quarter and year 2016 performance. Live and archived broadcasts of the call can be accessed at http://www.StateAuto.com/STFC. A replay of the call can be heard beginning at 2 p.m., Feb. 14, by calling 855-859-2056, conference ID 51089135. Supplemental schedules detailing the Company’s fourth quarter and year 2016 financial, sales and underwriting results are made available on http://www.StateAuto.com/STFC prior to the conference call. Except for historical information, all other information in this news release consists of forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. These forward-looking statements are subject to risks and uncertainties that could cause actual results to differ materially from those projected, anticipated or implied. The most significant of these uncertainties are described in State Auto Financial's Form 10-K and Form 10-Q reports and exhibits to those reports, and include (but are not limited to) legislative changes at both the state and federal level, state and federal regulatory rule making promulgations and adjudications, class action litigation involving the insurance industry and judicial decisions affecting claims, policy coverages and the general costs of doing business, the impact of competition on products and pricing, inflation in the costs of the products and services insurance pays for, product development, geographic spread of risk, weather and weather-related events, and other types of catastrophic events. State Auto Financial undertakes no obligation to update or revise any forward-looking statements.

Loading STFC collaborators
Loading STFC collaborators